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Graph Neural Networks (GNNs) Are Getting Popular
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Emerging Systems

3. https://www.dgl.ai
1. AliGraph: A Comprehensive Graph Neural Network Platform 4, https://pytorch-geometric.readthedocs.io
2. Interpolate between two molecules with pre-trained JTNN 5. https://qithub.com/PaddlePaddle/PGL

Diverse Applications



http://www.vldb.org/pvldb/vol12/p2094-zhu.pdf
https://github.com/shionhonda/dgl-playground/blob/master/jtnn.ipynb
https://www.dgl.ai/
https://pytorch-geometric.readthedocs.io/en/latest/
https://github.com/PaddlePaddle/PGL

Key Building Block of GNNs — Message Aggregation

= Message function calculates a message from the feature of each source vertex
= Aggregation function aggregates the messages as the new feature of the

destination vertex
The message function is multi-
, layer perceptron (MLP)
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Key Building Block of GNNs — Attention Calculation

= Edge function calculates an attention score for each edge
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The edge function is
dot product

Edge function is customizable



GNN Systems Lack a Flexible and Efficient Backend

Deep learning frameworks as backend (e.g., PyTorch in PyG):
e Lack of support for computation on graph (highly sparse) X

Graph processing frameworks as backend (e.g., Minigun in DGL):
e Can flexibly express computation on graph v/
e Missing optimizations in the feature dimension X
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Minigun exploits edge parallelism by
scheduling the computation on one
edge to one thread

We want to exploit parallelism in the feature dimension as well
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Our Solution: FeatGraph

m FeatGraph co-optimizes graph traversal and feature dimension computation
m FeatGraph accelerates GNN training and inference by 32x on CPU, 7x on GPU

GNN Models: GCN, GAT, and more

/ Sparse templates express graph traversal

GNN Frameworks: DGL, PyG, and mye/ UDFs (user-defined functions) express

Stack

L ey

Tensor Compiler: TVM

I Code generation

X86 CPU, NVIDIA GPU
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Mapping Graph Computations to Sparse Kernels

Graph View Matrix View

Adjacency Matrix Feature Vectors
A B €D E F G H

HGFEUDU CBA

Xg"®" = sum( copy(X,), copy(Xc) )

Message aggregation is mapped to generalized SpMM
(sparse-dense matrix multiplication)



Mapping Graph Computations to Sparse Kernels

Graph View Matrix View
Feature Vectors Feature Vectors Adjacency Matrix
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SAB = SBA = dOt(XA’ XB) element-wise multiplication

Attention calculation is mapped to generalized SDDMM
(sampled dense-dense matrix multiplication)



Programming Interface

featgraph.spmm(Adj, MessageF, AggregationF, target, FDS)

_— 7/ /N

adjacency matrix user-defined user-defined CPU or feature dimension
of the graph message function aggregation function GPU schedule

featgraph.sddmm(Adj, EdgeF, target, FDS)

[N

adjacency matrix user-defined CPU or feature dimension
of the graph edge function GPU schedule



Expressing GCN!'l Message Aggregation

import featgraph, tvm

Adj = featgraph.spmat(shape=(n, n), nnz=m) The message function copies the
VertexFeat = tvm.placeholder(shape=(n, d)) feature vector of the source vertex
def MessageF(src, dst, eid):
out = tvm.compute(shape=(d,),
lambda i: VertexFeat[src, i]) The aggregation function is sum
return out

AggregationF = tvm.sum Trigger the SpMM template

Result = featgraph.spmm(Adj, MessageF, AggregationF) k/////////

[1] T. N. Kipf and M. Welling. “Semi-supervised classification with graph convolutional networks.” ICLR 2017 10



Optimizing GCN Message Aggregation on CPUs

s Graph partitioning to improve cache utilization

Assume cache capacity is 2 x L, L is feature length ——— 4 source vertex partitions

Adjacency Matrix Feature Vectors
f1 f2 f3 f4

Improved read locality within each partition
Need to merge intermediate results from 4 partitions



Optimizing GCN Message Aggregation on CPUs

s Combining graph partitioning with feature tiling

2 source vertex partitions, 2 feature partitions

Adjacency Matrix Partitioned Feature Vectors Adjacency Matrix Partitioned Feature Vectors
flf2 3 f4

X concatenate X

Lower merge/write cost
Need to traverse the adjacency matrix twice

Feature tiling enables the tradeoff between accesses to graph topological data
and accesses to feature data
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Applying CPU Optimizations in FeatGraph

Decoupled, two-level optimizations:
e Incorporating graph partitioning into the sparse templates
e Specifying feature tiling with an FDS (feature dimension schedule)

def FDS(out):
s = tvm.create_schedule(out)
s[out].split(out.axis[@], factor=8)
return s

Result = featgraph.spmm(Adj, MessageF, AggregationF, ‘cpu’, FDS)

More complex UDFs that compute on multi-dimensional feature tensors require a
multi-level tiling scheme, which can also be expressed by an FDS



Effect of Graph Partitioning and Feature Tiling

GCN message aggregation, reddit dataset:
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= Combining graph partitioning and feature tiling effectively boosts the performance



Sensitivity to Partitioning Factors

GCN message aggregation, reddit dataset, feature length 128:
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The best performance is achieved with 16 graph partitions and 4 feature partitions
FeatGraph uses naive grid search; using intelligent tuners is left for future work
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Optimizing Dot-Product Attention on GPUs

m Effective parallelization is the key to achieving high performance on GPU

s FeatGraph exploits parallelism in the feature dimension
e Threads collectively process one edge using tree reduction
e In comparison, Gunrock’s parallelization strategy: one thread processes one edge

Feature Vectors Feature Vectors Adjacency Matrix
A B CDEFGH a*e | b*f |c*g | d*h

ae+cg | bf+dh

b
X
O
HGFEUDU CZBA

element-wise multiplication out
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Applying GPU Optimizations in FeatGraph

Decoupled, two-level optimizations:
e Incorporating vertex/edge parallelization into the sparse templates
e Specifying feature parallelization with an FDS

def FDS(out):
s = tvm.create_schedule(out)
s[out].tree_reduce(out.reduce_axis[@], 'thread.x')
return s

Result = featgraph.sddmm(Adj, EdgeF, ‘gpu’, FDS)

More complex UDFs that compute on multi-dimensional feature tensors require a
multi-level parallelization scheme, which can also be expressed by an FDS



Effect of Feature Dimension Tree Reduction

Dot-product attention, rand-700K dataset:
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= [ree reduction is especially efficient when the feature length is large



MLP Message Aggregation

import featgraph, tvm
Adj = featgraph.spmat(shape=(n, n), nnz=m)
# message function: RelLU((src feature + dst feature) * W)
XV = tvm.placeholder(shape=(n,dl))
W = tvm.placeholder(shape=(d1,d2))
def MessageF(src, dst, eid):
k = tvm.reduce_axis((9, dl1))
out = tvm.compute((d2,), lambda i:
tvm.max(tvm.sum((XV[src, k] + XV[dst, k]) * W[k,i ])), ©)
return out
# aggregation function: max
AggregationF = tvm.max
# CPU FDS: tile multiple dimensions
def FDS(out):
s = tvm.create_schedule(out)
s[out].split(out.axis[@], factor=8)
s[out].split(out.reduce_axis[@], factor=8)
return s
# GPU FDS: parallelize multiple dimensions
def FDS(out):
s = tvm.create_schedule(out)
s[out].bind(out.axis[@], 'block.x")
s[out].tree_reduce(out.reduce_axis[0@], 'thread.x') 19
return s




Evaluation Setup

Environment
e CPU evaluation is on Amazon c5.9xlarge instance, which is a one socket 18-
core 3.0 GHz Intel Xeon Platinum 8124M machine with 25 MB LLC
e GPU evaluation is on Amazon p3.2xlarge instance, which has a Tesla V100

Kernels
e GCN message aggregation (vanilla SpMM)
e MLP message aggregation (generalized SpMM)
e Dot-product attention (vanilla SDDMM)

Baselines
e Vendor-provided sparse libraries: MKL on CPU, cuSPARSE on GPU
e Graph processing frameworks: Ligra on CPU, Gunrock on GPU



time normalized to FeatGraph
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Single-Threaded CPU Kernel Performance

On reddit dataset:
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FeatGraph outperforms both Ligra and MKL; MKL does not support MLP message

aggregation and dot-product attention

FeatGraph achieves similar speedup on other tested datasets
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Multi-Threaded CPU Kernel Performance

GCN message aggregation kernel, reddit dataset, feature length 512:
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speedup over single-threaded execution
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m FeatGraph scales well because of two reasons:
e Avoiding LLC contention by assigning multiple threads to work on one graph partition at a time

e The thread pool in TVM runtime is lightweight and efficient
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GPU Kernel Performance

On reddit dataset:
GCN message aggregation MLP message aggregation Dot-product attention
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FeatGraph outperforms Gunrock; FeatGraph is on par with cuSPARSE on GCN message
aggregation; cuSPARSE does not support the other two kernels

Gunrock is extremely slow on message aggregation kernels because of two reasons:
o Its edge parallelization incurs a huge overhead of atomic operations for vertex-wise reductions
e It does not exploit parallelism in feature dimension computation 23




End-to-End GNN Training and Inference

We integrated FeatGraph into DGL (version 0.4.1)

The original backend of DGL is Minigun, a “mini-version” of Gunrock

DGL w/o DGL w/
reddit dataset FeatGraph | FeatGraph | Speedup
(unit: sec) | (unit: sec)
CPU GCN 2447.1 114.5 21.4x
training GraphSage 1269.6 57.8 21.9x%
GAT 5763.9 179.3 32.2%
CPU GCN 1176.9 353 21.3%
inference | GraphSage 602.4 29.8 20.2x
GAT 1580.9 T1.5 22.1x
GPU GCN 6.3 22 2.9x%
training | GraphSage 3.1 1.5 2.1x
GAT *N/A 1.64 *N/A
GPU GCN 3.1 1.5 2.1%
inference | CraphSage 1.5 1.1 1.4x
GAT 8.1 1.1 T.1x

FeatGraph accelerates end-to-end
GNN training and inference by up to

32x on CPU and 7x on GPU
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FeatGraph: A Flexible and Efficient Backend for
Graph Neural Network Systems

https://github.com/dglai/FeatGraph
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https://github.com/dglai/FeatGraph

