FeatGraph: A Flexible and Efficient Backend for
Graph Neural Network Systems

Yuwei Hu', Zihao Ye?, Minjie Wang?, Jiali Yu?, Da Zheng?,
Mu Li2, Zheng Zhang?, Zhiru Zhang', Yida Wang?

T Cornell University
2 Amazon Web Services

= Cornell University aWS

Graph Neural Networks (GNNs) Are Getting Popular

= = e DeepGraphLibrary
Gendel":“female [3]
2
==, @ PyTorch
1] geometric
[4]
\ —
\ ; Y] Paddle
~ Y =)= =] Graph
/ 5 " (M\ LLearning
[2] [5]

Emerging Systems

3. https://www.dgl.ai
1. AliGraph: A Comprehensive Graph Neural Network Platform 4, https://pytorch-geometric.readthedocs.io
2. Interpolate between two molecules with pre-trained JTNN 5. https://qithub.com/PaddlePaddle/PGL

Diverse Applications

http://www.vldb.org/pvldb/vol12/p2094-zhu.pdf
https://github.com/shionhonda/dgl-playground/blob/master/jtnn.ipynb
https://www.dgl.ai/
https://pytorch-geometric.readthedocs.io/en/latest/
https://github.com/PaddlePaddle/PGL

Key Building Block of GNNs — Message Aggregation

= Message function calculates a message from the feature of each source vertex
= Aggregation function aggregates the messages as the new feature of the

destination vertex
The message function is multi-
, layer perceptron (MLP)
E gl

C %
% %\ The aggregation function is

taking the max
Message function and aggregation function are customizable

B

N

I
-=max
0

I

Key Building Block of GNNs — Attention Calculation

= Edge function calculates an attention score for each edge

\

The edge function is
dot product

Edge function is customizable

GNN Systems Lack a Flexible and Efficient Backend

Deep learning frameworks as backend (e.g., PyTorch in PyG):
e Lack of support for computation on graph (highly sparse) X

Graph processing frameworks as backend (e.g., Minigun in DGL):
e Can flexibly express computation on graph v/
e Missing optimizations in the feature dimension X

thread 2

=

C

\

thread 1

=2

Minigun exploits edge parallelism by
scheduling the computation on one
edge to one thread

We want to exploit parallelism in the feature dimension as well

5

Our Solution: FeatGraph

m FeatGraph co-optimizes graph traversal and feature dimension computation
m FeatGraph accelerates GNN training and inference by 32x on CPU, 7x on GPU

GNN Models: GCN, GAT, and more

/ Sparse templates express graph traversal

GNN Frameworks: DGL, PyG, and mye/ UDFs (user-defined functions) express

Stack

L ey

Tensor Compiler: TVM

I Code generation

X86 CPU, NVIDIA GPU

6

Mapping Graph Computations to Sparse Kernels

Graph View Matrix View

Adjacency Matrix Feature Vectors
A B €D E F G H

HGFEUDU CBA

Xg"®" = sum(copy(X,), copy(Xc))

Message aggregation is mapped to generalized SpMM
(sparse-dense matrix multiplication)

Mapping Graph Computations to Sparse Kernels

Graph View Matrix View
Feature Vectors Feature Vectors Adjacency Matrix
A B CDZEFGH
X, <
m
o
X o°Q
Xg w
[T
0]
T
SAB = SBA = dOt(XA’ XB) element-wise multiplication

Attention calculation is mapped to generalized SDDMM
(sampled dense-dense matrix multiplication)

Programming Interface

featgraph.spmm(Adj, MessageF, AggregationF, target, FDS)

_— 7/ /N

adjacency matrix user-defined user-defined CPU or feature dimension
of the graph message function aggregation function GPU schedule

featgraph.sddmm(Adj, EdgeF, target, FDS)

[N

adjacency matrix user-defined CPU or feature dimension
of the graph edge function GPU schedule

Expressing GCN!'l Message Aggregation

import featgraph, tvm

Adj = featgraph.spmat(shape=(n, n), nnz=m) The message function copies the
VertexFeat = tvm.placeholder(shape=(n, d)) feature vector of the source vertex
def MessageF(src, dst, eid):
out = tvm.compute(shape=(d,),
lambda i: VertexFeat[src, i]) The aggregation function is sum
return out

AggregationF = tvm.sum Trigger the SpMM template

Result = featgraph.spmm(Adj, MessageF, AggregationF) k/////////

[1] T. N. Kipf and M. Welling. “Semi-supervised classification with graph convolutional networks.” ICLR 2017 10

Optimizing GCN Message Aggregation on CPUs

s Graph partitioning to improve cache utilization

Assume cache capacity is 2 x L, L is feature length ——— 4 source vertex partitions

Adjacency Matrix Feature Vectors
f1 f2 f3 f4

Improved read locality within each partition
Need to merge intermediate results from 4 partitions

Optimizing GCN Message Aggregation on CPUs

s Combining graph partitioning with feature tiling

2 source vertex partitions, 2 feature partitions

Adjacency Matrix Partitioned Feature Vectors Adjacency Matrix Partitioned Feature Vectors
flf2 3 f4

X concatenate X

Lower merge/write cost
Need to traverse the adjacency matrix twice

Feature tiling enables the tradeoff between accesses to graph topological data
and accesses to feature data

12

Applying CPU Optimizations in FeatGraph

Decoupled, two-level optimizations:
e Incorporating graph partitioning into the sparse templates
e Specifying feature tiling with an FDS (feature dimension schedule)

def FDS(out):
s = tvm.create_schedule(out)
s[out].split(out.axis[@], factor=8)
return s

Result = featgraph.spmm(Adj, MessageF, AggregationF, ‘cpu’, FDS)

More complex UDFs that compute on multi-dimensional feature tensors require a
multi-level tiling scheme, which can also be expressed by an FDS

Effect of Graph Partitioning and Feature Tiling

GCN message aggregation, reddit dataset:

5
baseline
mm feature tiling
41 I graph partitioning
mmm feature tiling + graph partitioning
3 -

Jdi

64 128 256 512
feature length

2_
1_
0
32

= Combining graph partitioning and feature tiling effectively boosts the performance

Sensitivity to Partitioning Factors

GCN message aggregation, reddit dataset, feature length 128:

. *
9r, 9r,

o) L, D3,y
6,? . 6;2‘ X T
Uy " Uy o,

* *
6/2«. ,
/ .
Ns C'O’l?
S s N N

S Sq 6 6g

feature partitions = 1 -

12.5 10.0 7.6
feature partitions =2- 7.9 . |
- 10
feature partitions = 4-“ 12.4 "
feature partitions = 8 ﬂ 12.6 I6

The best performance is achieved with 16 graph partitions and 4 feature partitions
FeatGraph uses naive grid search; using intelligent tuners is left for future work

(29s :11un) awin

Optimizing Dot-Product Attention on GPUs

m Effective parallelization is the key to achieving high performance on GPU

s FeatGraph exploits parallelism in the feature dimension
e Threads collectively process one edge using tree reduction
e In comparison, Gunrock’s parallelization strategy: one thread processes one edge

Feature Vectors Feature Vectors Adjacency Matrix
A B CDEFGH a*e | b*f |c*g | d*h

ae+cg | bf+dh

b
X
O
HGFEUDU CZBA

element-wise multiplication out

16

Applying GPU Optimizations in FeatGraph

Decoupled, two-level optimizations:
e Incorporating vertex/edge parallelization into the sparse templates
e Specifying feature parallelization with an FDS

def FDS(out):
s = tvm.create_schedule(out)
s[out].tree_reduce(out.reduce_axis[@], 'thread.x')
return s

Result = featgraph.sddmm(Adj, EdgeF, ‘gpu’, FDS)

More complex UDFs that compute on multi-dimensional feature tensors require a
multi-level parallelization scheme, which can also be expressed by an FDS

Effect of Feature Dimension Tree Reduction

Dot-product attention, rand-700K dataset:

3.0

Gunrock
2.5 Bl FeatGraph w/o tree reduction
mm FeatGraph w/ tree reduction

2.0 1
1.0 1
0.5 1
0.0
32 64 256 512

128
feature length

speedup over Gunrock
=
Ln

= [ree reduction is especially efficient when the feature length is large

MLP Message Aggregation

import featgraph, tvm
Adj = featgraph.spmat(shape=(n, n), nnz=m)
message function: RelLU((src feature + dst feature) * W)
XV = tvm.placeholder(shape=(n,dl))
W = tvm.placeholder(shape=(d1,d2))
def MessageF(src, dst, eid):
k = tvm.reduce_axis((9, dl1))
out = tvm.compute((d2,), lambda i:
tvm.max(tvm.sum((XV[src, k] + XV[dst, k]) * W[k,i])), ©)
return out
aggregation function: max
AggregationF = tvm.max
CPU FDS: tile multiple dimensions
def FDS(out):
s = tvm.create_schedule(out)
s[out].split(out.axis[@], factor=8)
s[out].split(out.reduce_axis[@], factor=8)
return s
GPU FDS: parallelize multiple dimensions
def FDS(out):
s = tvm.create_schedule(out)
s[out].bind(out.axis[@], 'block.x")
s[out].tree_reduce(out.reduce_axis[0@], 'thread.x') 19
return s

Evaluation Setup

Environment
e CPU evaluation is on Amazon c5.9xlarge instance, which is a one socket 18-
core 3.0 GHz Intel Xeon Platinum 8124M machine with 25 MB LLC
e GPU evaluation is on Amazon p3.2xlarge instance, which has a Tesla V100

Kernels
e GCN message aggregation (vanilla SpMM)
e MLP message aggregation (generalized SpMM)
e Dot-product attention (vanilla SDDMM)

Baselines
e Vendor-provided sparse libraries: MKL on CPU, cuSPARSE on GPU
e Graph processing frameworks: Ligra on CPU, Gunrock on GPU

time normalized to FeatGraph

e 9
o U

Single-Threaded CPU Kernel Performance

On reddit dataset:

by
=}

A
n

o (= 2]
L I L L f

o w
f 1 f

GCN message aggregation

MLP message aggregation

32

~
~

Emm FeatGraph - B FeatGraph -
B Ligra %5- B Ligra =
. MKL 35 35
@ 51 T
L L
w w
2 4 Q
el o
& 8
p— 3‘ p—
@ @
£ £
o 2+ o
c c
Q Q
£ 11 E
- -
0_
64 128 256 512 32 64 128 256 512
feature length feature length

Dot-product attention

(=2}
s

B FeatGraph

o = N w B w
I L 1 L L L

feature length

FeatGraph outperforms both Ligra and MKL; MKL does not support MLP message

aggregation and dot-product attention

FeatGraph achieves similar speedup on other tested datasets

21

512

Multi-Threaded CPU Kernel Performance

GCN message aggregation kernel, reddit dataset, feature length 512:

12 1 —*— FeatGraph
Ligra
104 —®— MKL

speedup over single-threaded execution

1 2 4 8 16
number of threads

m FeatGraph scales well because of two reasons:
e Avoiding LLC contention by assigning multiple threads to work on one graph partition at a time

e The thread pool in TVM runtime is lightweight and efficient
22

GPU Kernel Performance

On reddit dataset:
GCN message aggregation MLP message aggregation Dot-product attention
BN FeatGraph W@ Gunrock WS cuSPARSE BN FeatGraph W Gunrock a
43.1 70.8 88.9 100.2 106.7 38.7 35.2 41.2 44.3 46.4 : B FeatGraph
-E- '% § s Gunrock
L]
£ & <
2, g5 £
4 4 e 4
£ 2 g2l £
g S €14
E1] 21 £
0- 1]
32 64 128 256 512 L 64 128 256 512 5 64 128 256 512
feature length feature length feature length

FeatGraph outperforms Gunrock; FeatGraph is on par with cuSPARSE on GCN message
aggregation; cuSPARSE does not support the other two kernels

Gunrock is extremely slow on message aggregation kernels because of two reasons:
o Its edge parallelization incurs a huge overhead of atomic operations for vertex-wise reductions
e It does not exploit parallelism in feature dimension computation 23

End-to-End GNN Training and Inference

We integrated FeatGraph into DGL (version 0.4.1)

The original backend of DGL is Minigun, a “mini-version” of Gunrock

DGL w/o DGL w/
reddit dataset FeatGraph | FeatGraph | Speedup
(unit: sec) | (unit: sec)
CPU GCN 2447.1 114.5 21.4x
training GraphSage 1269.6 57.8 21.9x%
GAT 5763.9 179.3 32.2%
CPU GCN 1176.9 353 21.3%
inference | GraphSage 602.4 29.8 20.2x
GAT 1580.9 T1.5 22.1x
GPU GCN 6.3 22 2.9x%
training | GraphSage 3.1 1.5 2.1x
GAT *N/A 1.64 *N/A
GPU GCN 3.1 1.5 2.1%
inference | CraphSage 1.5 1.1 1.4x
GAT 8.1 1.1 T.1x

FeatGraph accelerates end-to-end
GNN training and inference by up to

32x on CPU and 7x on GPU

24

FeatGraph: A Flexible and Efficient Backend for
Graph Neural Network Systems

https://github.com/dglai/FeatGraph

/ _QM” \
[[==])] Cornell University aWS

https://github.com/dglai/FeatGraph

