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Abstract— Deep learning has revolutionized computer vision
and other fields since its big bang in 2012. However, it is
challenging to deploy Deep Neural Networks (DNNs) into real-
world applications due to their high computational complexity.
Binary Neural Networks (BNNs) dramatically reduce compu-
tational complexity by replacing most arithmetic operations
with bitwise operations. Existing implementations of BNNs have
been focusing on GPU or FPGA, and using the conventional
image-to-column method that doesn’t perform well for binary
convolution due to low arithmetic intensity and unfriendly
pattern for bitwise operations. We propose BitFlow, a gemm-
operator-network three-level optimization framework for fully
exploiting the computing power of BNNs on CPU. BitFlow
features a new class of algorithm named PressedConv for
efficient binary convolution using locality-aware layout and
vector parallelism. We evaluate BitFlow with the VGG network.
On a single core of Intel Xeon Phi, BitFlow obtains 1.8x speedup
over unoptimized BNN implementations, and 11.5x speedup
over counterpart full-precision DNNs. Over 64 cores, BitFlow
enables BNNs to run 1.1x faster than counterpart full-precision
DNNs on GPU (GTX 1080).

I. INTRODUCTION

Deep learning has revolutionized computer vision and

other fields since 2012. However, it is challenging to deploy

Deep Neural Networks (DNNs) into real-world applications

due to their high compute and storage requirements. For

example, the VGG-16 model is over 500 MB in size and

requires about 40 billion operations per inference. Improving

storage efficiency allows for more complex models that

offer higher accuracy; improving inference speed allows for

quick response to changing events such as early detection

of pedestrians in auto driving systems. Therefore, network

compression and acceleration is a timely research topic.

Binary Neural Networks (BNNs), first proposed in 2016

by Courbariaux et al. [3], has been demonstrated as an

effective method that unifies compression and acceleration.

In particular, BNNs refer to neural networks with weights

and activations constrained to +1 (represented as 1) or -

1 (represented as 0). By replacing floating point opera-

tions with bitwise operations (i.e. xor and bit-count), BNNs

achieve a compression ratio of 32× compared with full preci-

sion networks while dramatically accelerating the inference

speed at the cost of little accuracy loss [33] [13]. BNNs

offer the prospects of enabling efficient deep learning on

performance, memory, and power constrained environment

such as autonomous driving and always-on IoT systems.
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Fig. 1: System Overview

Our work specifically focuses on developing a framework

for exploiting the compute and storage efficiency of BNNs

on CPUs. The reason we choose to focus on general-purpose

CPUs, instead of GPUs [17], is that running BNNs on

CPU helps free GPU resources for other more complex

tasks. For instance, auto driving systems typically require

multiple perception models such as detection, tracking, and

segmentation to be evaluated concurrently. Offloading BNNs

to CPUs improves the overall system throughput and la-

tency. In addition, modern CPUs are equipped with SIMD

instruction extensions such as SSE and AVX in x86 [18] and

NEON and SVE in ARM architectures [14]. SIMD hardware

is particularly well-suited for the highly parallel nature of

bitwise operations in BNN inference. FPGA and ASIC

approaches and their limitations are discussed in related work

section (Section VI).

We propose BitFlow, a novel approach for optimizing

BNNs on CPUs. Our key insight is that existing imple-

mentations of BNNs use the conventional image-to-column

method [10] that, although is well-suited for floating-point

convolutions, performs poorly on binary convolutions due

to the low arithmetic intensity and the unfriendly data-

flow pattern of bitwise operations. Instead, BitFlow proposes

a new class of algorithm called PressedConv for efficient

binary convolution. PressedConv uses a unique locality-

aware layout for BNN operators and exploits the SIMD-

parallelism in modern processor architectures.

We implement BitFlow as a stand-alone inference engine

for BNNs without external dependencies. This not only

results in a highly optimized implementation of BNNs,
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but also substantially simplifies its deployment in practical

applications. We evaluate BitFlow with the VGG network

[22]. On a single core of Intel Xeon Phi, BitFlow obtains

1.8x speedup over unoptimized BNN implementations, and

11.5x speedup over counterpart full-precision DNNs. Over

64 cores, BitFlow enables BNNs to run 1.1x faster than

counterpart full-precision DNNs on GPU (GTX 1080). It

is worth noting that BitFlow is a generic BNN framework

and is generally applicable to other SIMD hardware and

architectures.

This paper makes the following contributions:

1) BitFlow is the first framework for exploiting computing

power of BNNs on CPU in a systematic way.

2) We propose a new class of algorithm named Pressed-

Conv for efficient binary convolution using locality-

aware layout and vector parallelism.

3) We evaluate BitFlow with the VGG network. The results

show that BitFlow achieves 83% speedup over unopti-

mized BNN implementations, and even outperforms a

GPU implementation of full-precision DNNs.

In section II, we review the background of BNNs together

with other neural network compression and acceleration

methods, and also the conventional image-to-column con-

volution method. In section III, we describe our algorithms

for efficient binary convolution using locality-aware layout

and vector parallelism. In section IV, we describe the im-

plementation of BitFlow framework, and the optimizations

conducted on gemm, operator, network levels respectively.

In section V, we describe the evaluation methodology and

report the experiments results, followed by discussions and

conclusions.

II. BACKGROUND

A. Network Compression and Acceleration

Network Pruning. Network pruning has proven to be an

effective method to reduce the network size by removing

non-informative neural connections. Ciresan [2] proposes to

drop the weights randomly to achieve good performance.

Han [7] reduces parameter number and computational cost

without loss of accuracy on several benchmarks: the param-

eters below a certain threshold are removed to form a sparse

network, and then the network is re-trained for the remaining

connections.

Network Quantization. In quantized networks, the ob-

jective is to train DNNs whose quantized weights don’t

significantly impact the network’s precision. For example,

Courbariaux et. al [4] shows that 10-bits are enough for

Maxout networks, and how efficient multiplications can be

performed with fixed-point arithmetic. Continuing this trend,

Hwang [8] proposes DNN with ternary weights {-1,0,+1}.
Their training leverages an optimized backtracking procedure

for fixed-point data, obtaining precision very close to that of

the floating-point baseline.

Binary Neural Networks (BNNs). To maximize the com-

pression ratio of network, neural network binarization meth-

ods are developed. BinaryConnect [5] proposes to constrain

the weights to binary values of +1 or -1 and achieves state-

of-the-art results on MNIST, CIFAR-10 datasets. BinaryNet

[3] further extends the idea of parameter binarization by

converting activations to +1 or -1.

The weights of a BNN can be stored in the bits of a 32-bit

unsigned int, and this procedure is called bit-packing. One

immediate advantage of bit-packing is to drastically reduce

the memory usage by a 32× factor. An even more significant

advantage is the ability to process multiple values at the same

time. Assume �A and �B are binarized vectors of length N (N
is multiple of 32), Ai is the ith element of packed �A, Bi is

the ith element of packed �B, then the inner product of �A and
�B is calculated by:

�A · �B = N − 2×
⎛
⎝N/32∑

i=0

bitcount
(
XOR (Ai, Bi)

)⎞⎠ (1)

Equation 1 is the secret why BNN brings acceleration.

Computationally intensive Floating-point Multiply and Add

operations (FMAs) are replaced by xor (for multiplications)

and bit-count (for accumulations), enabling significant com-

putational speedup. This represents the cornerstone over

which we build the BitFlow framework.

B. Convolution Operation

A convolution operator correlates a bank of K filters

with C channels and size h × w against a minibatch of

N images with C channels and size H × W . We denote

filter elements as Wk,c,i,j and image elements as In,c,x,y .

The computation of a single convolution output On,k,x,y is

given by the formula:

On,k,x,y =
C∑

c=1

h∑
i=1

w∑
j=1

In,c,x+i,y+jWk,c,i,j (2)

Fig. 2a shows an example of a convolution on a two

dimensional image of size 3 × 3 with two input channels

(Channel 0 and Channel 1). The convolution has two output

features (Feature 0 and Feature 1), and each feature has indi-

vidual sets of weights that correspond to each input channel.

The weights for the first channel are the top two matrices

and the weights for the second channel are the bottom two

matrices. To produce the first element of Feature 0, the

convolution computes the inner product of the sub-region

of Channel 0 within the black boundary and the feature’s

weights that correspond to Channel 0. The convolution then

sums this result with the inner product of the sub-region

of Channel 1 within the black boundary and the feature’s

weights that correspond to Channel 1.

The conventional execution method for convolution is

image-to-column. It consists of two processes:

1) Unfold: The first step is to unfold the input activation

vector into a matrix, as illustrated in Fig. 2b. For

each input channel, the unfolding procedure flattens the

inputs to each kernel into a row vector. The sequential

concatenation of each row vector produces the unfolded
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(a) 2D convolution (b) Unfolding (c) Gemm

Fig. 2: (a) An example of a 2D convolution using a 2× 2 kernel with 2 input channels of size 3× 3 and 2 output features.

(b) Unfolding a 2D image input for convolving with a 2× 2 kernel. (c) Computing 2D convolution using Gemm.

representation of a channel. Then the unfolded input

channels are stacked from left to right to produce the

final unfolded input matrix.

2) Gemm: The second step performs a matrix-matrix

multiplication, with one matrix consisting of the layer’s

weights and the other consisting of the unfolded acti-

vations, as shown in Fig. 2c. It constructs the weight

matrix by stacking row vectors that correspond to the

flattened representation of the weights for each feature.

This image-to-column convolution approach reduces con-

volution to a Gemm (matrix multiplication) problem, so that

BLAS libraries such as MKL [24] and OpenBLAS [29] can

be utilized to achieve good performance.

III. EFFICIENT BINARY OPERATORS

A BNN is composed of a sequence of operators whose

weights W b
k and activations abk are binarized to the values

{−1,+1}. The superscript b in the notation indicates binary

quantities. Weights and activations are {−1,+1}, but at the

hardware level they must be encoded as {0, 1}. We follow

the convention to encode −1 → 0 and +1 → 1. Among

many possible choices, e.g. stochastic binarization [19], we

employ the following activation function due to its efficient

implementation:

xb = sign(x) =

{
+1 x ≥ 0

−1 x < 0
(3)

This section describes the algorithms for efficient binary

neural network operators in detail, with a focus on binary

convolution. The conventional image-to-column method is

abandoned due to low arithmetic intensity and unfriendly

pattern for bitwise operations when applied to binary con-

volution, and a new class of algorithm named PressedConv

using locality-aware layout and vector parallelism is intro-

duced.

A. Limits of Image-to-column for Binary Convolution

As discussed in section II-B, the conventional image-to-

column method reduces convolution to Gemm so that it can

benefit from optimized BLAS libraries. This approach is

widely used in float-value convolution, but it doesn’t perform

well when applied to binary convolution due to two limits.

First limit is the overhead brought by the unfolding

procedure, which reduces the maximum achievable fraction

of the intrinsic Arithmetic Intensity (AIT) of the convolution

operation. Arithmetic Intensity (AIT) refers to the ratio of the

number of arithmetic operations to the number of memory

operations in a computation [6]. It is an important character-

ization of the performance of a convolution algorithm, and

a high AIT is necessary to get high performance because

memory operations are slower than arithmetic operations

[23]. The AIT of a convolution is
|A|

|I|+|W |+|O| , where |A|
is the number of arithmetic operations and |I| + |W | +

|O| is the number of memory accesses. The sets I, W, and

O correspond to the input, weight, and output, respectively.

Their sizes are calculated as follows(notations from section

II-B):

|A| = 2C ×H ×W ×K × h× w (4)

|I| = C ×H ×W (5)

|W | = K × C × h× w (6)

|O| = K × (H − h+ 1)× (W − w + 1) (7)

The unfolding procedure increases the size of the input by

approximately a factor of h × w. In addition, the unfolded

input need to be stored before the Gemm, doubling the

number of memory accesses to the unfolded input. Therefore,

the minimum number of memory accesses in image-to-

column method is 2|U |+|W |+|O|, where |U | is the unfolded

input with size:

|U | = (H − h+ 1)× (W − w + 1)× C × h× w (8)

The resulting fraction of the intrinsic AIT of convolu-

tion that image-to-column method can achieve is at most
|I|+|W |+|O|
2|U |+|W |+|O| . For binary convolution, the sizes of input and

weight are reduced by a factor of 32 after bit-packing, and

the computational complexity is also dramatically reduced,

which amplifies the overhead of unfolding procedure and

makes AIT even lower.
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Another limit of image-to-column method when applied to

binary convolution is that after the input tensor is unfolded

into a matrix of M ×N , N won’t be multiple of 32 in most

cases, making bit-packing and SIMD execution inefficient.

B. PressedConv Algorithm

We propose PressedConv, a new class of algorithms for

efficient binary convolution using locality-aware layout and

vector parallelism. PressedConv conducts bit-packing of in-

put tensor and filters along the channel dimension, thus

pressing them by a factor of 32 (or 64, 128, 256, 512), and

then computes convolution of the pressed input tensor and

filters.

Locality-aware Layout. One important property of con-

volution operator to notice is that the channel dimension is

multiple of 32 in most cases. Taking VGG as an example,

the channel dimension is 64 in conv2.1, 128 in conv3.1,

256 in conv4.1, and 512 in conv5.1. This determines that

the channel dimension is the best choice along which bit-

packing should be conducted. For efficient bit-packing, we

adopt NHWC (batch, height, weight, channel) data layout

in BitFlow, rather than NCHW, the default setting in main-

stream deep learning frameworks e.g. Caffe [11], MXNet [1],

PyTorch [16].

In BitFlow, each element of a tensor A ∈ R
H×W×C is

identified by the triplet h, w, c, where h ∈ [0, H) indicates

the height dimension, w ∈ [0,W ) indicates the width dimen-

sion, and c ∈ [0, C) indicates the channel dimension. A is

stored in memory using row-major order with interleaved

channels. According to the layout, the element Ah,w,c is

found at position (hW + w)C + c in linear memory. Bit-

packing is performed along the channel dimension, and this

enables efficient memory access, which would have not

been possible if either height or width dimension has been

chosen instead. This layout is optimal for retrieving a pixel

neighborhood as needed by convolution without requiring

the layout to be changed. Moreover, the result will also be

stored in the NHWC layout automatically at zero cost.

Vector Execution Scheduler. Modern (co)processors have

a feature that one can apply an operation on several data

elements in a single instruction - referred to as SIMD

(Single Instruction Multiple Data) parallelism. SSE (Stream-

ing SIMD Extension) is designed by Intel and introduced

in 1999 in their Pentium III series of processors and it

uses 128-bit vector unit. Advanced Vector Extension (AVX)

is proposed in 2008 and AVX256 expands most integer

commands to 256 bits [9]. AVX512 expands AVX to 512-

bit and is available on Intel Xeon Phi coprocessor [25].

Using a 512-bit vector unit, 16 single precision (or 8 double

precision) floating point operations can be performed at a

single vector operation. In our work, we utilize vector bitwise

operations, e.g. mm xor si128 ( m128i a, m128i
b) that computes the bitwise XOR of the 128-bit value

in a and the 128-bit value in b, mm256 xor si256
( m256i a, m256i b) that computes the bitwise

XOR of the 256-bit value in a and the 256-bit value in

b, and mm512 xor si512 ( m512i a, m512i b)

Fig. 3: Bit-packing of input tensor along channel dimension,

pressing the tensor by a factor of 32.

Fig. 4: Vector Execution Scheduler

that computes the bitwise XOR of the 512-bit value in a and

the 512-bit value in b.

Assume that the input tensor is H×W ×C, and the filter

is h × w × C. As described above, we first pack binarized

input and filters into chunks of 32 bits, and then further pack

them into data types of m128i or m256i, m512i to utilize

SIMD instructions for efficient bitwise operations. The sizes

of input tensor and filters vary for different neural networks.

When C is multiple of 512 and AVX512 is available on the

hardware, 512-bit instruction can be utilized, however, when

this condition is not satisfied, some strategies are needed

to ensure that we can still use SIMD efficiently. A general

vector execution scheduler is introduced to select the optimal

computing kernel for different settings.

The vector execution scheduler consists of three compo-

nents: shape inferer, hardware detector, and code generator.

The shape inferer calculates the output dimensions of each

convolution operator in a neural network given the input size

and filter sizes. The hardware detector detects whether a

certain vector instruction set is available on the hardware

platform. The code generator selects the optimal computing

kernel for different settings based on the following rules:

1) When channel dimension is multiple of 512, pack

unsigned ints into m512i and utilize AVX512.

2) When channel dimension is multiple of 256, pack

unsigned ints into m256i and utilize AVX256.

3) When channel dimension is multiple of 128, pack

unsigned ints into m128i and utilize SSE.

4) When channel dimension is multiple of 32, use intrinsic
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TABLE I: SIMD instructions used in this work

SIMD Instruction Description

mm128 xor si128 (a, b) Compute the bitwise XOR of 128 bits in a and b
mm256 xor si256 (a, b) Compute the bitwise XOR of 256 bits in a and b
mm512 xor si512 (a, b) Compute the bitwise XOR of 512 bits in a and b
mm512 maskz xor epi64 (k, a, b) Compute the bitwise XOR of packed 64-bit integers in a and b using zeromask k
mm512 popcnt epi64 (a) Count the number of logical 1 bits in a
mm512 maskz popcnt epi64 (k, a) Count the number of logical 1 bits in a using zeromask k

Algorithm 1 PressedConv

step 1: Bit-packing of input tensor along channel dimension.
step 2: Bit-packing of filter along channel dimension.
step 3: Convolution of pressed input tensor and filter. Do multi-
plications using xor, accumulations using bit-count. Utilize vector
parallelism on the C dimension; utilize multi-core parallelism on
the fused H and W dimension.

bitwise instruction; else, pad extra zeros.

Currently the vector execution scheduler supports SSE,

AVX256, and AVX512 because we have implemented com-

puting kernels using these SIMD instruction sets. The sched-

uler can be easily extended to support more SIMD instruction

sets, such as NEON on ARM architecture.

Multi-core parallelism is also utilized. Since BitFlow tar-

gets at low-latency of inference tasks (not training), only

the case when batch=1 is considered. Therefore, multi-

core parallelism is performed over the height and width

dimension.

Address Zero Padding. One issue to address in convolu-

tion is zero padding [21]. In convolutional neural networks,

in order to avoid that the pixels on the border are not

fully utilized, extra pixels of zero value are padded. This

procedure introduces overhead that is non-trivial since the

computing complexity of binary convolution is drastically

reduced compared with float-value convolution. We address

zero padding by memory pre-allocation. Assume that the

output size of a convolution operator is H×W (one channel)

without padding, and we want to pad it to (H+2)×(W+2)
so that its shape will remain the same after a following

3×3 convolution layer. Not following the first-convolution-

then-padding convention, we pre-allocate memory of size

(H +2)× (W +2) for the output, and store the convolution

results in the middle H ×W part, leaving the marginal part

unchanged (zero as initialized). In this way, zero padding

is realized at zero cost. Fig. 5 illustrates how this strategy

works when H = 3 and W = 3.

C. Extension to Other Binary Operators

The PressedConv algorithm can be extended and applied to

other binary operators, e.g. binary fully connected operator

and binary max pooling operator, which are also building

blocks of a binary neural network. Binary fully connected

operator is in essence doing binary matrix matrix multipli-

cation (Gemm). Assume that the input is M×N , the weight

is N × K (M is the batch size and should be 1, N is the

number of neurons of the previous layer, K is the number of

(a) (b)

Fig. 5: Automatic padding at zero cost through memory pre-

allocation. (a) Pre-allocate memory of size 5 × 5 for the

output. (b) Store the convolution results in the middle 3× 3
part, leaving the marginal part unchanged as zero.

neurons of the current layer), we utilize vector parallelism

over the N dimension, and multi-core parallelism over the

K dimension. As for binary max pooling operator, it also

adopts NHWC data layout and conducts bit-packing along

the C dimension as in PressedConv algorithm. The difference

is that xor and bit-count are replaced by bitwise or, which

is used to get the max of a sequence of ones and zeros.

IV. IMPLEMENTATION

We implement BitFlow as a stand-alone inference engine

for BNNs without external dependencies. This not only

results in a highly optimized implementation of BNNs,

but also substantially simplifies its deployment in practical

applications, such as on mobile or embedded devices.

Some of the most important data structures in BitFlow are

listed in Table II. bit64 u uses bit field and union to do

binarization and bit-packing efficiently; m128 u, m256 u,

and m512 u are used to leverage vectorized xor and bit-

count operations.

BitFlow decouples the task of efficiently implement-

ing BNNs into three sub-tasks: gemm-level optimization,

operator-level optimization, and network-level optimization.

This approach enables us to fully exploit the optimization

opportunities on each level.

Gemm-Level Optimization. There has been intensive

research on how to implement sGemm (single float general

matrix multiplication) on CPU efficiently [27][28]. Some

techniques used in sGemm can be directly applied to bGemm

(binary Gemm), e.g. tiling and loop unrolling. One difference

is that bGemm has additional binarization and bit-packing

stages. The data structures of bit64 t and bit64 u in

BitFlow enable us to do bit-packing together with binariza-
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TABLE II: Data structures in BitFlow

// for efficient binarization
typedef struct{

unsigned int b0 :1;
unsigned int b1 :1;
unsigned int b2 :1;
unsigned int b3 :1;
...
...
unsigned int b62:1;
unsigned int b63:1;

}bit64_t;
// for efficient bit-packing
typedef union{

bit64_t b;
uint64_t u;

}bit64_u;
// used in SSE
typedef union{

__m128i m;
int64_t i[2];

}m128_u;
// used in AVX256
typedef union{

__m256i m;
int64_t i[4];

}m256_u;
// used in AVX512
typedef union{

__m256i m;
int64_t i[8];

}m512_u;

Fig. 6: Mapping from operators to computing kernels.

tion in one step. Moreover, it is common practice to transpose

matrix B before computing A×B for more friendly memory

accesses. We conduct transposition of matrix B implicitly

with binarization and bit-packing, which means that we store

the results of bit-packing in a transposed pattern. To sum

up, we fuse binarization, bit-packing, and transposition into

a single operation, as illustrated in Table III.

Operator-Level Optimization. As discussed in section

III, BitFlow abandons the conventional image-to-column

method due to low arithmetic intensity and unfriendly pattern

for bitwise operations when applied to binary convolution,

and introduces a new class of algorithm named Pressed-

Conv using locality-aware layout and vector parallelism for

efficient binary convolution. To ensure that we use SIMD

efficiently, a general vector execution scheduler is introduced

to select the optimal computing kernel for different sizes of

input and filter. Taking VGG as an example, the channel

dimension is 3 in conv1.1 and the selected kernel pads extra

TABLE III: Fused binarization, bit-packing, and transposi-

tion in BitFlow

/* pack weight: B(float) -> Bb(bit) */
float *p;
int i, j;
bit64_u bit64;
for (j = 0; j < k; j+=1)
{

for (i = 0; i < n; i+=64)
{

p = &B[i*k+j];
// fuse bit-packing into binarization
bit64.b.b0 = p[ 0]>=0.0f;
bit64.b.b1 = p[ 1*k]>=0.0f;
bit64.b.b2 = p[ 2*k]>=0.0f;
bit64.b.b3 = p[ 3*k]>=0.0f;
...
...
bit64.b.b62 = p[62*k]>=0.0f;
bit64.b.b63 = p[63*k]>=0.0f;
// do transposition implicitly
Bb[(j*n+i)>>6] = bit64.u;

}
}

TABLE IV: VGG architecture. K is the number of filters.

For fully connected operators (fc6, fc7), K is the number

of weight matrix’s columns, and the input has only two

dimensions H ×W

Operator H ×W × C K stride

conv2.1 112× 112× 64 128 1× 1
conv3.1 56× 56× 128 256 1× 1
conv4.1 28× 28× 256 512 1× 1
conv5.1 14× 14× 512 512 1× 1
fc6 25088× 4096 4096 None
fc7 4096× 4096 1000 None
pool4 28× 28× 512 None 2× 2
pool5 14× 14× 512 None 2× 2

zeros to the channel dimension; it is 64 in conv2.1 and the

selected kernel utilizes intrinsic bitwise operations; it is 128

in conv3.1 and the selected kernel utilizes SSE; it is 256

in conv4.1 and the selected kernel utilizes AVX256; it is

512 in conv5.1 and the selected kernel utilizes AVX512 if

available e.g. on Intel Xeon Phi, otherwise AVX256 e.g. Intel

Core i7. The mapping from operators to computing kernels

is illustrated in Fig. 6.

Network-Level Optimization. Compared with full-

precision DNN, BNN introduces binarization and bit-packing

stages. Noticing that weights are constant in inference,

we conduct binarization and bit-packing of weights during

network initialization, once and for all. Besides, we pre-

allocate all the memory needed for storing the output and

intermediate results by analysis of the neural network as

a static computational graph. The pre-processing saves run

time cost.
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TABLE V: Accuracy and model size comparison of binarized

VGG with full-precision VGG

full-precision VGG binarized VGG
MNIST (%) 99.4 98.2
CIFAR10 (%) 92.5 87.8
ImageNet top-5 (%) 88.4 76.8
Model Size (MB) 534 17

V. EVALUATION

Experiments Setup. We evaluate BitFlow with VGG,

a classic neural network model used in a wide range of

computer vision tasks. The VGG network uses 3 × 3 fil-

ters exclusively in the convolution operators. We select 4

convolution operators, 2 fully connected operators, and 2

pooling operators as the benchmarks, as summarized in

Table IV. We compared the speed of BitFlow with unopti-

mized BNN implementations and counterpart full-precision

operators. Experiments are conducted on Intel(R) Core(TM)

i7-7700HQ and Intel(R) Xeon Phi(TM) CPU 7210, both

on a single core and over multi-cores. Furthermore, we

compared the best performance of BitFlow with counterpart

full-precision operators implemented on GPU (GTX 1080).

Accuracy. First, we run binarized VGG network using

BitFlow on datasets of MNIST and CIFAR10, and compared

its accuracy with counterpart full-precision VGG network.

On MNIST, 98.2% accuracy is achieved, which is 1.2%

lower than full-precision VGG; on CIFAR10, it is 87.8%,

which is 4.7% lower than full-precision VGG; the gap does

widen on ImageNet dataset, with top-5 accuracy 76.8% for

BNN and 88.4% for full-precision networks, as shown in

Table V. The accuracy loss is acceptable for applications

that are tolerant to a certain amount of prediction errors.

For example, in TuSimple’s auto driving system, BNN is

successfully applied to the vehicle re-identification module.

Besides, the accuracy gap between BNNs and full-precision

networks can be further reduced with more elaborate train-

ing algorithms. Recent advances on this direction include

Zhuang’s work [33] that compensates BNN’s accuracy loss

by keeping certain layers in full precision, and Lin’s work

that [13] approximates full-precision weights with the linear

combination of multiple binary weight base. BitFlow benefits

from those advances, and with improved accuracy of BNNs,

BitFlow can apply to more scenarios in the future.

Vector Parallelism Performance. Vectorization brings

83% speedup over unoptimized BNN implementations on

average, as shown in Fig. 7. For conv2.1, both BitFlow

and unoptimized (i.e. unvectorized) binary kernel achieve

10× acceleration over float-value convolution as the baseline,

which is reasonable since the channel dimension is 64 and no

SIMD instruction is utilized. For conv3.1, BitFlow is 1.4×
faster than unoptimized binary kernel and 14× faster over the

baseline, and this is because that SSE 128-bit instruction is

utilized in BitFlow to accelerate the computing. For conv4.1,

AVX256 is utilized and brings 1.9× acceleration over un-

optimized binary kernel. For conv5.1, AVX512 is utilized

and brings 2.5× acceleration. For fc6 and fc7, 2.3× accel-

Fig. 7: Performance improvement brought by vectorization

over unoptimized BNN implementations, with counterpart

float-value operators as the baseline (1×), tested on a single

core of Intel Xeon Phi 7210.

Fig. 8: Multi-core performance of BitFlow on Intel(R)

Core(TM) i7-7700HQ, with single thread float-value oper-

ators as the baseline (1×).

eration over unoptimized binary kernel and approximately

50× acceleration over float-value operators are observed,

which benefits not only from AVX512 vector instruction,

but also other gemm optimization techniques (e.g. tiling and

loop unrolling). For pool4 and pool5, the acceleration is not

that obvious as convolution operator and fully connected

operator, and this is because that the computing complexity

of pooling is relatively low and the overhead of bit-packing

diminishes the acceleration of bitwise operations. On average

vector parallelism utilizing SIMD instructions brings 83%

speedup over unoptimized BNN implementations.

Multi-core Parallelism Performance. BitFlow scales

well to multi-cores on both i7-7700HQ and Xeon Phi for

most operators. Fig. 8 shows the scalability of BitFlow

over multi-cores on i7-7700HQ, with counterpart float-value

operators as the baseline. As we can see, a near-linear

scalability is obtained on the selected 8 benchmarks. For

conv2.1, 4-core runs 3.9x faster than a single core, and for
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Fig. 9: Multi-core performance of BitFlow on Intel(R) Xeon

Phi(TM) CPU 7210, with single thread float-value operators

as the baseline (1×).

Fig. 10: Wall-clock time comparison of BitFlow with coun-

terpart float-value operators on GPU (GTX 1080).

conv3.1, conv4.1, conv5.1, a 3× acceleration is observed.

This is because that the H and W dimension of conv2.1

is large, which contributes to better scalability over multi-

cores. As the neural network becomes deeper, the H and W

dimension diminishes, leading to a slightly worse scalability

of conv3.1, conv4.1 and conv5.1. Fig. 9 shows the scalability

of BitFlow over multi-cores tested on Xeon Phi 7210. As we

can see, conv2.1 scales well to even 64 cores and achieves

49.3× acceleration over single-core and 493× acceleration

over the float-value baseline. For conv4.1, BitFlow stops

scaling well over 16 cores, and compared with 16-cores, no

more than 2× acceleration is obtained on 64-cores. Similarly

for conv5.1, BitFlow stops scaling well over 4 cores, and

compared with 4-cores, no more than 2× acceleration is

obtained on 16-cores.

Comparison with GPU. We compared the wall-clock time

of BitFlow with counterpart float-value operators on GPU

(GTX 1080), and observed speed of BitFlow comparable

with GTX 1080 on Intel i7-7700HQ, and faster on Intel Xeon

Phi 7210, as illustrated in Fig. 10. The best performance of

BitFlow on Intel i7-7700HQ (4 threads) and Intel Xeon Phi

Fig. 11: VGG end to end time comparison.

7210 (64 threads) is used. As we can see, BitFlow on Intel i7-

7700HQ (4 threads) is slower than GTX 1080 for conv2.1

and conv3.1, and faster for conv4.1 and conv5.1 because

of the efficient utilization of SIMD instructions (AVX256),

which again verifies the effectiveness of vector parallelism

for fast bitwise operations. On Intel Xeon Phi 7210, the speed

of BitFlow for conv2.1 is comparable with that of GTX1080,

which is because of good multi-core scalability. For fully

connected operators, Intel i7-7700HQ is comparable with

GTX 1080, while Intel Xeon Phi 7210 is faster.

Furthermore, we compared VGG end to end time of

BitFlow with counterpart full-precision network on GTX

1080, as shown in Fig. 11. The speed of VGG on GPU is

tested using keras with tensorflow 1.2 as the backend. The

best performance of BitFlow on Intel i7-7700HQ (4 threads)

and Intel Xeon Phi 7210 (64 threads) is used. VGG19 and

VGG16 have similar architectures, except that VGG19 has

3 more convolution operators. As we can see, the end to

end inference time of VGG16 is 12.87ms on GTX 1080,

16.10ms on Intel i7-7700HQ, and 11.82ms on Intel Xeon

Phi 7210. For VGG19, the the end to end inference time is

14.92ms on GTX 1080, 18.96ms on Intel i7-7700HQ, and

13.68ms on Intel Xeon Phi 7210. BitFlow on Intel Xeon Phi

7210 brings 8.9% speedup over GTX 1080 for VGG16, and

9.1% speedup for VGG19.

To sum up, we evaluate BitFlow with the VGG network.

The results show that: BitFlow’s vectorization method brings

83% speedup over unoptimized BNN implementations; Bit-

Flow scales well to multi-cores on both i7-7700HQ and

Xeon Phi for most operators; over 64 cores, BitFlow enables

binarized VGG to run 1.1× faster than full-precision VGG.

VI. RELATED WORK

There is a body of work on accelerating BNN inference,

at both software and hardware level.

In the original paper of BNN [3], a proof-of-concept

implementation on GPU has been proposed to show the

acceleration brought by binarization. The implementation
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is limited to binary fully connected operator, and binary

convolution operator is not explored.

Implementation of BNNs on FPGA has been intensively

investigated in [32] [26] [12]. They use verilog to do the

design, which is difficult and requires great labor efforts.

Zhang et al. [30] leverage modern HLS tools to write the

design in productive, high-level code. Though the FPGA

implementation is energy saving, it doesn’t achieve good

overall computing performance measured in FLOPS, which

makes it not suitable for latency critical applications.

Nurvitadhi et al. [15] propose an ASIC accelerator of

BNNs. Their implementation covers only binary fully con-

nected operator and a significant acceleration is observed.

However, ASIC can be hard to design and is not flexible,

especially for BNNs when the algorithms are still fast

developing and changing [20] [33] [31] [13].

Our approach differs from existing work in two major

ways: (1) We are the first to study BNNs for CPU accelera-

tion. Since general-purpose CPUs are easily accessible, our

work can apply to a wide range of scenarios. (2) We propose

a new class of algorithm named PressedConv for efficient

binary convolution using locality-aware layout and vector

parallelism, based on the insight that conventional image-to-

column method doesn’t perform well for binary convolution

due to low arithmetic intensity and unfriendly pattern for

bitwise operations.

VII. CONCLUSION

BNNs unify storage compression and speed acceleration,

and is critical for deep learning inference in constrained

environment. Existing BNN implementations do not achieve

the full potential of BNN because it largely inherits the

image-to-column convolution strategy used by full-precision

DNNs and thus leads to poor performance scaling. This

paper proposes PressedConv, a new convolution algorithm

specifically designed for BNN. Based on PressedConv, we

present BitFlow, a hierarchical framework that optimizes

BNN performance at gemm-, operator-, and network-level.

Based on evaluation on the popular VGG network, we

show that BitFlow obtains 83% speedup over unoptimized

BNN implementations on a single core machine, and 10%

speedup over GPU implementations of full-precision DNNs

on a 64 core machine. BitFlow shows a promising first step

toward utilizing binarization for fast and storage-efficient

deep learning.
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