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Abstract—Graph processing is typically memory bound due to low
compute to memory access ratio and irregular data access pattern.
The emerging high-bandwidth memory (HBM) delivers exceptional
bandwidth by providing multiple channels that can service memory
requests concurrently, thus bringing the potential to significantly boost
the performance of graph processing.

This paper proposes GraphLily, a graph linear algebra overlay,
to accelerate graph processing on HBM-equipped FPGAs. GraphLily
supports a rich set of graph algorithms by adopting the GraphBLAS
programming interface, which formulates graph algorithms as sparse lin-
ear algebra operations. GraphLily provides efficient, memory-optimized
accelerators for the two widely-used kernels in GraphBLAS, namely,
sparse-matrix dense-vector multiplication (SpMV) and sparse-matrix
sparse-vector multiplication (SpMSpV). The SpMV accelerator uses a
sparse matrix storage format tailored to HBM that enables streaming,
vectorized accesses to each channel and concurrent accesses to multiple
channels. Besides, the SpMV accelerator exploits data reuse in accesses
of the dense vector by introducing a scalable on-chip buffer design. The
SpMSpV accelerator complements the SpMV accelerator to handle cases
where the input vector has a high sparsity. GraphLily further builds a
middleware to provide runtime support. With this middleware, we can
port existing GraphBLAS programs to FPGAs with slight modifications to
the original code intended for CPU/GPU execution. Evaluation shows that
compared with state-of-the-art graph processing frameworks on CPUs
and GPUs, GraphLily achieves up to 2.5× and 1.1× higher throughput,
while reducing the energy consumption by 8.1× and 2.4×; compared with
prior single-purpose graph accelerators on FPGAs, GraphLily achieves
1.2×–1.9× higher throughput.

I. INTRODUCTION

Graph is a universal representation for encoding relationships (e.g.,
social networks), connections (e.g., road maps), and structures (e.g.,
molecules). As a result, graph processing is almost ubiquitous with
applications in a diverse range of domains [29], [20]. Graph process-
ing is typically memory bound due to low compute to memory access
ratio and irregular data access pattern. There have been continuous
efforts on alleviating the memory bottleneck in graph processing by
compressing the graph storage [30], ensuring streaming accesses [28],
and enhancing locality [37], most of which are conducted on DDR-
equipped systems.

The emerging high-bandwidth memory (HBM) has the potential
to significantly boost the performance of graph processing. HBM
delivers a much higher bandwidth than DDR by providing multiple
channels that can service memory requests concurrently. HBM has
been adopted into modern CPUs (e.g., Intel KNL), GPUs (e.g.,
NVIDIA Titan V), and FPGAs (e.g., Intel Stratix 10 MX, Xilinx
Alveo U280). In particular, HBM-equipped FPGAs stand out as an
appealing platform for accelerating graph processing. Fully unleash-
ing the potential of HBM for accelerating graph processing requires
co-designing the data layout across multiple HBM channels, the par-
allelization strategy, and the hardware architecture. Hence, the ability
of FPGAs to customize the memory system (e.g., building a one-level
large on-chip buffer instead of the deep cache hierarchy on CPUs) and
compute engines (e.g., building a dataflow architecture instead of the
fixed pipeline on CPUs) is crucial. In addition, FPGAs consume less

power than CPUs and GPUs. Furthermore, the increasing availability
of FPGAs in datacenters (e.g., the Microsoft Catapult Project [26])
and clouds (e.g., AWS, Alibaba Cloud, Nimbix) makes using FPGAs
for graph processing viable.

There is an active body of research that attempts to accelerate graph
processing on FPGAs. However, prior efforts either only handle one
specific graph algorithm [40], [39], [36] or require generating/loading
a separate bitstream for each algorithm [22], [23], [5], [41]. The
lack of a unified bitstream for multiple graph algorithms introduces
two major problems: (1) Generating a new bitstream for a graph
algorithm may take hours or days with the current FPGA CAD tools.
(2) Even with pre-compiled bitstreams, the cost of switching them
by reconfiguring an FPGA at run time is quite high—at millisecond
timescale; this is particularly undesired in scenarios where users need
to run multiple graph processing workloads, which are especially
common in the settings of datacenter computing. We argue that
these two problems limit the practical applicability of the existing
approaches to FPGA-based graph processing.

This paper proposes GraphLily, a Graph linear algebra overlay,
to provide efficient and practical acceleration of graph processing
workloads on HBM-equipped FPGAs. An overlay refers to a virtual
hardware architecture that is mapped onto the physical FPGA fabric
[4], [7], [34]; it offers a more constrained configuration space—
and therefore admits much faster compilation with bitstream reuse
across applications in the same domain. The overlay approach is only
feasible when common graph algorithms can be implemented with
a small set of compute primitives (kernels). To this end, GraphLily
adopts the GraphBLAS programming interface [16], an open-source
effort to formulate graph algorithms as sparse linear algebra op-
erations. GraphBLAS represents the topology of a graph (i.e., the
edges) as a sparse adjacency matrix, and the attributes associated
with active vertices (i.e., the frontier) or all vertices as a sparse
or dense vector. There are two dominant kernels in GraphBLAS:
generalized SpMV (sparse-matrix dense-vector multiplication) and
generalized SpMSpV (sparse-matrix sparse-vector multiplication).
Here, “generalized” means that the kernel supports customizable
binary operators and reduction operators beyond multiply and add.1

GraphLily provides efficient, memory-optimized SpMV and SpM-
SpV accelerators conforming to the GraphBLAS interface. The
SpMV accelerator exploits parallelism across rows of the sparse
matrix. There are two major data access patterns: (1) streaming
accesses of the sparse matrix exhibiting no data reuse and (2) random
accesses of the dense vector exhibiting data reuse. To fully utilize
the available bandwidth of HBM for streaming in the sparse matrix,
the SpMV accelerator stores the sparse matrix in a customized
format that allows vectorized accesses to each HBM channel and
concurrent accesses to multiple HBM channels. To exploit the data

1In the remaining discussions, SpMV/SpMSpV refers to generalized Sp-
MV/SpMSpV.



TABLE I: GraphLily achieves higher throughput, bandwidth effi-
ciency, and energy efficiency than GraphIt and GraphBLAST —
Evaluated on PageRank using the orkut graph, which has 3M
vertices and 213M edges. GraphIt runs on a Xeon CPU with 32
threads; GraphBLAST runs on a GTX 1080 Ti GPU. Throughput
is measured by millions of traversed edges per second (MTEPS);
bandwidth efficiency is measured by throughput per GB/s; energy
efficiency is measured by throughput per Watt.

GraphIt GraphBLAST GraphLily
Throughput 2151 4181 5940

Bandwidth (GB/s) 282 484 285
Bandwidth efficiency 7.6 8.6 20.8

Power (Watts) 268 182 49
Energy efficiency 8.0 23.0 121.2

reuse in accesses of the dense vector and avoid excessive random
off-chip accesses, the SpMV accelerator introduces a scalable on-
chip buffer design that combines vector replicating and banking to
feed a large number of processing elements (PEs). Unlike SpMV,
SpMSpV has a lower degree of parallelism and is less bandwidth-
hungry. Therefore, the SpMSpV accelerator is designed to read the
matrix from a regular DDR memory to avoid competing with the
SpMV accelerator for the HBM bandwidth. The SpMSpV accelerator
is faster than the SpMV accelerator when the input vector has a
high sparsity. Both the SpMV and the SpMSpV accelerators support
arbitrarily large graphs (not exceeding the capacity of FPGA device
memory consisting of HBM and DDR) by partitioning the graph.
GraphLily also implements several small kernels (e.g., scalar-vector
add) that are required for the full functionality of GraphBLAS but
less critical to the overall performance. These accelerators in the
GraphLily overlay share FPGA resources (e.g., connections to the
off-chip memory) when feasible; they are developed using the high-
level synthesis (HLS) design methodology.

Performant graph processing on FPGAs requires not only effi-
cient kernel implementations, but also sufficient runtime support.
GraphLily builds a middleware to manage three runtime tasks: (1)
data transfer between the CPU host and the FPGA device; (2) on-
device data transfer between kernels; (3) kernel scheduling, e.g.,
deciding whether to use SpMV or SpMSpV according to the sparsity
of the input vector. The middleware connects the GraphBLAS inter-
face and the hardware accelerators, allowing users to port existing
GraphBLAS programs to FPGAs with slight modifications to the
original code intended for CPU/GPU execution.

We implemented GraphLily on a Xilinx Alveo U280 FPGA,
using 19 HBM channels and one DDR channel delivering 285
GB/s bandwidth in total. GraphLily outperforms strong CPU and
GPU baselines despite running at a much lower frequency (165
MHz). Table I shows the results of PageRank on orkut: com-
pared with GraphIt [38], a domain-specific language and compiler
for graph processing on CPUs, GraphLily achieves 2.8× higher
throughput, 2.7× higher bandwidth efficiency, and 15.2× higher
energy efficiency; compared with GraphBLAST [33], a GraphBLAS-
based graph processing system on GPUs, these numbers are 1.4×,
2.4×, and 5.3×. Evaluation results of more graph algorithms on a
wide collection of datasets consistently confirm the advantages of
GraphLily. We further compare GraphLily with HitGraph [41] and
ThunderGP [5], two prior FPGA graph accelerators that generate
a separate bitstream for each graph algorithm; GraphLily achieves
1.2×–1.9× higher throughput. GraphLily is available in open-source
format at https://github.com/cornell-zhang/GraphLily.

The main contributions of this paper are as follows:

• To the best of our knowledge, GraphLily is the first graph linear
algebra overlay on HBM-equipped FPGAs that can accelerate a
rich set of graph algorithms without the need for re-compiling
and bitstream switching.

• GraphLily provides efficient, memory-optimized SpMV and
SpMSpV accelerators. Specifically, GraphLily co-designs the
sparse matrix storage format, the parallelization strategy, and
the hardware architecture to maximize both off-chip and on-chip
bandwidth utilization.

• GraphLily builds a middleware to provide runtime support
for GraphBLAS-based graph processing on FPGAs. With this
middleware, we are able to port GraphBLAS-based CPU/GPU
implementations of graph algorithms to FPGAs with slight
modifications.

• Experimental results on a variety of graph algorithms and a
wide collection of datasets show that GraphLily achieves higher
throughput, bandwidth efficiency, and energy efficiency than
strong CPU and GPU baselines.

The rest of the paper is organized as follows. Section II reviews the
background of GraphBLAS and explains why HBM-equipped FPGAs
are a promising platform for accelerating GraphBLAS-based graph
processing. Section III presents the system overview of GraphLily.
Section IV and V describe the accelerator design and the middleware
design, respectively. Section VI details the implementation, followed
by evaluation in Section VII. We discuss related work in Section VIII
and summarize in Section IX.

II. BACKGROUND

A. GraphBLAS

GraphBLAS [16] is an open-source effort to define standard
building blocks for graph algorithms in the language of sparse linear
algebra. GraphBLAS enhances the portability of graph algorithms
across different hardware backends, as evidenced by a growing
number of graph processing systems that follow the GraphBLAS
programming interface [8], [1], [33].

The foundation of GraphBLAS is to represent the topology of a
graph as a sparse adjacency matrix. Then, computations on the graph
are mapped to sparse linear algebra operations. Figure 1 illustrates
the mapping from breadth-first search (BFS) to sparse-matrix dense-
vector multiplication (SpMV) and sparse-matrix sparse-vector multi-
plication (SpMSpV). Specifically, pull-based graph traversal, where
every vertex checks whether it has a parent in the frontier (i.e., the
set of vertices visited at the last iteration), is mapped to SpMV; push-
based graph traversal, where each vertex in the frontier looks for its
children, is mapped to SpMSpV [3]. BFS typically applies SpMSpV
at the first few iterations when the frontier is small (i.e., the input
vector has a high sparsity), and switches to SpMV as the frontier
grows (i.e., the input vector becomes denser).

GraphBLAS can express a rich set of graph algorithms by gener-
alizing SpMV/SpMSpV to have customizable binary operators and
reduction operators, which are modeled as semirings. A semiring
is formally defined as a 5-tuple (D,⊗,⊕, I⊗, I⊕), where D is the
domain, ⊗ is the binary operator, ⊕ is the reduction operator, I⊗ is
the identity for ⊗, and I⊕ is the identity for ⊕. The commonly
used semirings are listed in Table II. Arithmetic semiring is the
standard semiring supported by vendor-provided sparse libraries such
as MKL on CPUs and cuSPARSE on GPUs; Boolean semiring is
used in traversal algorithms such as BFS, where visited vertices are
represented by 1 and unvisited vertices are represented by 0; Tropical



✕

(a) Pull-based graph traversal is mapped to SpMV

✕

(b) Push-based graph traversal is mapped to SpMSpV

Fig. 1: The mapping from BFS to SpMV/SpMSpV — Blue denotes
the frontier; green denotes the output, which will be the frontier for
the next iteration; red denotes visited edges.

TABLE II: Commonly used semirings in GraphBLAS.

5-tuple Application
Arithmetic Semiring (R,×,+, 1, 0) PageRank

Boolean Semiring (Boolean,&, |, 1, 0) BFS
Tropical Semiring (R ∪∞,+,min, 0,∞) SSSP

semiring is used in shortest path algorithms such as single-source
shortest path (SSSP), where calculating the distance between a pair
of vertices requires the + operator and relaxing the distance to the
source vertex requires the min operator. The semiring formulation
is a key to the expressiveness of GraphBLAS.

From the perspective of computation, SpMV and SpMSpV have
different characteristics. SpMV has a higher degree of parallelism,
while SpMSpV has a lower computational complexity due to sparsity
in both the matrix and the vector. We take these characteristics into
consideration in the design of the GraphLily overlay architecture.

B. Why HBM?

HBM is an emerging memory solution that offers high bandwidth
by stacking multiple DRAM dies vertically using system-in-package
(SiP) technology. From a programmer’s perspective, HBM provides
multiple channels that can service memory requests concurrently. For
example, Xilinx Alveo U280 has 32 HBM channels delivering 460
GB/s bandwidth in total, which is much higher than the bandwidth of
the DDR4 on the same platform (at 38 GB/s). The latency of HBM,
however, is reported to be 20% higher than that of DDR4 due to
added stacking layers [32].

To benefit from the high bandwidth of HBM, a workload must:
(1) exhibit a high degree of parallelism to effectively utilize multiple
channels, and (2) ensure streaming accesses to amortize latency
penalties. Graph processing workloads satisfy both requirements.
First, despite intrinsically irregular compute patterns, graph process-
ing workloads exhibit abundant parallelism across both vertices and
edges, as analyzed in [25]. Second, the main memory traffic in graph
processing workloads is incurred by edge accesses, which can be
performed in a streaming manner, as explored in [28]. Therefore,
graph processing can reap benefits from the high bandwidth of HBM.
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Fig. 2: GraphLily overview.

III. SYSTEM OVERVIEW

Figure 2 depicts the full hardware-software stack of GraphLily. At
the top level, users express graph algorithms (e.g., BFS, PageRank,
SSSP) with the GraphBLAS interface. GraphLily aims at accelerating
the graph algorithms on HBM-equipped FPGAs. More concretely,
GraphLily provides efficient, memory-optimized accelerators for
SpMV and SpMSpV, the two dominant kernels in GraphBLAS.
GraphLily also implements several small kernels such as scalar-
vector add for updating the attributes of vertices. These accelerators
together constitute the GraphLily overlay. Although the accelerators
are illustrated as separate ones, they share hardware resources in
the real implementation, such as AXI interfaces to the off-chip
memory. In the remaining discussions, we still treat each accelerator
separately for clarity. To connect the GraphBLAS interface and the
overlay, GraphLily builds a middleware that manages data transfer
and kernel scheduling. The middleware runs on the host CPU, which
communicates with the FPGA via PCIe.

IV. GRAPHLILY OVERLAY DESIGN

To fully unleash the potential of HBM for accelerating
GraphBLAS-based graph processing, three challenges exist: (1)
choosing appropriate parallelization strategies for SpMV and SpM-
SpV; (2) ensuring streaming accesses to edges while scaling to
multiple HBM channels; (3) efficiently handling random accesses
to vertices. GraphLily tackles these challenges by co-designing the
sparse matrix storage format and the accelerator architecture.

A. SpMV Accelerator

The SpMV accelerator is designed to saturate the HBM bandwidth
to enable performant pull-based graph processing. To this end,
we propose a new sparse matrix storage format that captures and
explicitly encodes both intra-channel and inter-channel memory-level
parallelism, and we fully exploit the parallelism in the accelerator.

1) Sparse Matrix Storage Format
SpMV provides massive parallelism across the rows of the sparse

matrix—each row performs a dot product with the dense vector.
The commonly used compressed sparse row (CSR) format, however,
is not suitable for exploiting the parallelism. CSR allocates data
needed by different processing elements (PEs) at distant locations
in memory, preventing intra-channel vectorized and inter-channel



(a) (b) (c)

Fig. 3: The CPSR sparse matrix storage format with two HBM channels — (a) A sample 8×8 sparse matrix. (b) Layout of the sparse matrix.
Two streams of rows are packed together and stored in one HBM channel. (c) Memory accesses at every cycle. Only accesses to values
are shown; accesses to column IDs follow the same pattern. CPSR enables streaming, vectorized accesses to each channel and concurrent
accesses to two channels. CPSR allows four PEs to run in parallel.

concurrent memory accesses. The ELLPACK format [18] enables
vectorized and concurrent memory accesses by padding the rows to
have the same degree (i.e., the number of non-zeros). ELLPACK is
efficient on matrices where the degrees follow a uniform distribution;
otherwise, the overhead incurred by padding is high. Real-world
graphs, however, are typically power-law [10], where a small portion
of vertices have a degree significantly larger than the average, thus
rendering ELLPACK inefficient.

In this work, we propose cyclic packed streams of rows (CPSR), a
sparse matrix storage format tailored to HBM. CPSR allows stream-
ing, vectorized memory accesses to each HBM channel by packing
consecutive rows, and concurrent memory accesses to multiple HBM
channels by interleaving the row packs in a cyclic manner. CPSR
has negligible storage overhead compared with CSR. Specifically, on
the orkut graph, CPSR has 1.03× the storage size of CSR, while
ELLPACK has 385.1×. A side-by-side comparison between CPSR
and CSR/ELLPACK is listed in Table III.

Figure 3 illustrates CPSR with two HBM channels on a sample
8×8 sparse matrix. The eight rows of the sparse matrix conceptually
form four streams, as shown in Figure 3a. CPSR marks the end of a
row by inserting a special symbol to the arrays of columns IDs and
values. This approach avoids a third array for storing the row length
information and simplifies the hardware design. To pack streams 1
and 2, CPSR places the first element of stream 1 and the first element
of stream 2 at contiguous locations, then places the next element of
stream 1 and the next element of stream 2 at contiguous locations;
this process continues until both streams run out of elements. For
alignment, dummy elements are padded to the end of the shorter
stream. CPSR stores the packed streams 1 and 2 in HBM channel 1,
as shown in Figure 3b. Similarly, CPSR packs streams 3 and 4 and
stores them in HBM channel 2. This data layout allows four PEs to
run in parallel, each processing one stream, as shown in Figure 3c.

In practice, the pack size (i.e., how many streams to pack) is set
according to the bandwidth of one HBM channel. On Alveo U280,
it is 14 GB/s. Assuming 32-bit column IDs and 32-bit values, if the
accelerator runs at 440 MHz, the pack size should be 14/(8∗0.44) =
4; if the accelerator runs at half the frequency, the pack size should
be doubled to 8.

Converting a graph from CSR to CPSR is lightweight since it
does not sort and reorder the vertices, which is required by several
prior specialized sparse formats [37], [13]. The preprocessing cost is
further amortized over multiple iterations, runs, and algorithms.

TABLE III: Comparing CPSR with CSR and ELLPACK formats.
CSR ELLPACK CPSR

streaming accesses 3 3 3

vectorized accesses 7 3 3

concurrent accesses 7 3 3

compact storage 3 7 3

Fig. 4: Architecture of the SpMV accelerator.

2) Accelerator Architecture
Figure 4 shows the architecture of the SpMV accelerator. It consists

of multiple PE clusters each connecting to one HBM channel. One
PE cluster has a matrix loader that loads in packets of the CPSR
matrix and decodes the packets into independent streams, a vector
reader that reads out vector values corresponding to the column IDs,
and an array of PEs each processing one stream. The accelerator uses
FIFOs to decouple the hardware blocks and enable efficient dataflow
execution. Each PE is a three-stage pipeline: reading out a temporary
result from the output buffer, updating the result, and writing the
updated result back to the output buffer. The PEs do data forwarding
to resolve read-after-write (RAW) dependencies. The output buffer is



partitioned into N ×K banks where N is the number of PE clusters
and K is the number of PEs per cluster. The static scheduling nature
of CPSR guarantees that the PEs access independent banks, thus
avoiding a complex on-chip network that connects every PE to all
the banks. The PEs implement all the semirings listed in Table II to
support a rich set of graph algorithms; the specific semiring to be
used is specified at run time by the programmer.

The PE cluster resembles a SIMD unit on CPUs in that both
perform vectorized computation. The key distinction is that the
PE cluster requires much less synchronization than a SIMD unit.
Specifically, when a lane in a SIMD unit finishes processing one
row of the matrix and writes back the result, all of the other lanes
have to stall. In contrast, the PEs only synchronize once at the end of
processing the entire matrix. The PE cluster more effectively exploits
the fine-grained parallelism in SpMV than a SIMD unit.

The vector reader accesses a cluster shared vector buffer
(CSVecBuf) to avoid excessive random off-chip accesses. Prior
SpMV accelerators either replicate the vector for every PE [17],
which quickly exhausts on-chip memories as the number of PEs in-
creases, or bank and share the vector for all the PEs [9], which results
in an overly large on-chip network, hurting the frequency or even
making place-and-route fail. CSVecBuf achieves better scalability
than the aforementioned approaches by combining vector replicating
and banking. One CSVecBuf is cyclically partitioned into K banks
so that every cycle it can feed K PEs each a vector value if there are
no bank conflicts. An arbiter inside the vector reader handles bank
conflicts on the CSVecBuf; requests that are not serviced due to bank
conflicts will be resent into the arbiter at the next cycle. The arbiter
rotates the priority of the requests from different FIFOs in a round-
robin manner to ensure that the FIFOs proceed at a similar pace. The
arbiter is pipelined; a single-cycle arbiter will limit the frequency of
the accelerator to be lower than 100 MHz.

B. SpMSpV Accelerator

The SpMSpV accelerator complements the SpMV accelerator to
handle push-based graph processing; it has advantages when the input
vector has a high sparsity.

1) Sparse Matrix Storage Format
Compared with SpMV, SpMSpV has a lower degree of parallelism

and is less bandwidth-hungry. Instead of accessing all the elements
of the sparse matrix, SpMSpV only accesses the columns decided
by the position of non-zeros in the sparse input vector. To achieve
optimal overall performance of the GraphLily overlay, we design the
SpMSpV accelerator to read the matrix from DDR and reserve HBM
for the SpMV accelerator.

We use a packed compressed sparse column (CSC) format for the
SpMSpV accelerator. Figure 5 illustrates the format with the pack
size set to two. Two contiguous elements in the same column are
packed into a packet. If the number of elements in a column does not
divide the pack size, dummy elements are padded. In this example,
only the second and the fourth columns are accessed, as shown
in Figure 5a. Memory accesses in the same column are streaming
and vectorized. Switching columns, however, incurs random accesses
and takes extra cycles. Two PEs run in parallel, each processing
one element in the packet, as shown in Figure 5b. Since the PEs
process one column at a time, they are guaranteed to update different
locations of the output, thereby avoiding expensive atomic operations.
The parallelism within one column is sufficient for the SpMSpV
accelerator to saturate the DDR bandwidth. When the input vector
is dense and the computational complexity is high, it is preferred to
use the SpMV accelerator instead.

✕
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Cycle n+3:

PE1  PE2 

E G

Switch Column

C H

K

PE1  PE2 

(b)

Fig. 5: The packed CSC format — (a) A sample 8×8 sparse matrix.
Only the second and the fourth columns are accessed. (b) Memory
accesses at every cycle. Packed CSC vectorizes memory accesses in
the same column. Switching columns takes n cycles.

Fig. 6: Architecture of the SpMSpV accelerator.

2) Accelerator Architecture
Figure 6 shows the architecture of the SpMSpV accelerator. It

consists of a vector loader that loads in the non-zeros of the sparse
input vector from HBM, a matrix loader that loads in packets of the
corresponding columns of the sparse matrix from DDR and decodes
the packets into independent streams, and an arbitrated crossbar that
dispatches the streams according to the row IDs to an array of PEs
accessing independent banks of the output buffer. The PEs follow
the same design as in SpMV; RAW dependencies happen much less
frequently in SpMSpV than in SpMV. Once all PEs finish execution,
the buffered output is converted from a dense format to a sparse
format and transferred to the off-chip memory. There is no buffering
for the input vector, since every non-zero of the input vector is loaded
once and immediately consumed.

V. GRAPHLILY MIDDLEWARE DESIGN

GraphLily builds a middleware to connect the GraphBLAS inter-
face and the overlay. The middleware exposes each accelerator to
users as a module. Users construct graph algorithms by specifying the
required modules and scheduling the execution order of the modules.

A module provides a set of APIs to manage host-to-device/device-
to-host data transfer and device-to-device data transfer. Host-to-
device/device-to-host data transfer happens only once before/after
the iterations of the graph algorithm; hence, its cost is amortized.
Device-to-device data transfer exchanges intermediate results during
the iterations of the graph algorithm. For example, in BFS, the
output vector of SpMV/SpMSpV will be the input vector for the next
iteration. Supporting device-to-device data transfer avoids frequently
transferring data to the host and back.

Figure 7 shows how to construct BFS in GraphLily, compared
with in GraphBLAST. BFS iteratively applies the SpMV or SpMSpV
kernel (depending on the size of the frontier) to traverse the graph,
and applies the Assign kernel to update the distance vector that



1 DenseVector bfs(SparseMatrix Adj, int src, int num_iter) {
2 // Initialize the frontier vector
3 SparseVector frontier = {src};
4 // Initialize the distance vector
5 DenseVector distance(Adj.num_rows);
6 for (int i=0; i<Adj.num_rows; i++) {distance[i] = -1;}
7 distance[src] = 0;
8 for (int iter=1; iter<=num_iter; iter++) {
9 // Perform graph traversal

10 // Use SpMV or SpMSpV depending on the frontier size
11 if (frontier.size > threshold) {
12 frontier = graphblast::SpMV<BoolSemiring>(Adj,
13 frontier, distance);
14 } else {
15 frontier = graphblast::SpMSpV<BoolSemiring>(Adj,
16 frontier, distance);
17 }
18 // Update distance
19 graphblast::Assign(distance, frontier, iter);
20 }
21 return distance;
22 }

(a) GraphBLAST

1 // A graph algorithm is expressed as a collection of modules
2 class BFS : graphlily::ModuleCollection {
3 // Specify the modules and load the bitstream
4 void init() {
5 this->SpMV = graphlily::SpMVModule<BoolSemiring>;
6 this->SpMSpV = graphlily::SpMSpVModule<BoolSemiring>;
7 this->Assign = graphlily::AssignModule;
8 this->load_bitstream("graphlily_overlay.bitstream");
9 }

10 // Format the matrix and send it to the device
11 void prepare_matrix(SparseMatrix Adj) {
12 AdjCPSR = this->SpMV.format(Adj);
13 this->SpMV.to_device(AdjCPSR); // to HBM
14 AdjPackedCSC = this->SpMSpV.format(Adj);
15 this->SpMSpV.to_device(AdjPackedCSC); // to DDR
16 }
17 // Compute BFS by scheduling the modules
18 // The logic is the same as in GraphBLAST
19 DenseVector run(int src, int num_iter) {
20 ...
21 }
22 };

(b) GraphLily
Fig. 7: Example code of BFS.

records at which iteration each vertex is visited. In addition to the
adjacency matrix and the frontier vector, the SpMV/SpMSpV kernel
takes in a third input—a mask vector—to ensure that every vertex
is visited at most once. Despite the difference that GraphBLAST
exposes each kernel as a function call while GraphLily exposes each
kernel as a module, the core part of the code that describes the
computation logic is the same between GraphBLAST and GraphLily.
Therefore, it would not take much effort for users to port code from
GraphBLAST, or other GraphBLAS-based graph processing systems,
to GraphLily. Notably, we were able to port BFS, PageRank, and
SSSP from GraphBLAST to GraphLily in a few hours.

VI. IMPLEMENTATION

We developed the GraphLily overlay using Vivado HLS (high-level
synthesis) in the Vitis toolchain (2019.2). HLS generates hardware
designs from annotated C++ programs, offering significantly higher
productivity over the traditional RTL (register-transfer-level) design
methodology. The overlay implementation takes 3.5K lines of HLS
C++ code.

Designs generated by HLS, however, often suffer frequency degra-
dation due to long wire delays caused by broadcast structures, as
analyzed in [12]. In our case, the large output buffer incurs a high-
fanout broadcast structure. We follow the method proposed in [12] to
reduce wire delays using a pipelined multi-level tree structure. This
optimization increases the frequency from 145 MHz to 165 MHz.

We implemented the overlay on a Xilinx Alveo U280 FPGA.
The overlay uses 16 HBM channels for the CPSR sparse matrix,
three HBM channels for the input vector, the mask vector, and the
output vector, respectively, and one DDR4 channel for the packed
CSC matrix; the total bandwidth is 285 GB/s. The accelerators in
the overlay share AXI interfaces to the three HBM channels that
store the input vector, the mask vector, and the output vector; this
sharing reduces the number of AXI interfaces from 37 to 27. We
tried sharing the output buffer between the SpMV and the SpMSpV
accelerators, but encountered problems in place-and-route, so we end
up using separate output buffers—the one for SpMV is 4 MiB on
URAM, and the one for SpMSpV is 1 MiB on BRAM. The CSVecBuf
is 120 KiB per cluster on URAM. The pack size is 8. We use a
fixed point datatype of 8 integer bits and 24 fractional bits, because
the Alveo U280 FPGA does not have hard floating point arithmetic
cores and synthesizing floating point units exhausts LUT resources.
In the evaluation, we verified that on BFS and SSSP, the fixed point
datatype outputs the same result as the floating point; on PageRank,

the relative difference between the results of the two datatypes is less
than 0.01%. Nevertheless, on FPGA devices that have hard floating
point arithmetic cores, such as Intel Stratix 10 MX, it is preferred to
use floating point. The resource utilization of the overlay is reported
in Table IV.

TABLE IV: Resource utilization of the GraphLily overlay on a
Xilinx Alveo U280 FPGA.

LUT FF DSP BRAM URAM
390K (35.0%) 493K (21.3%) 723 (8.0%) 417 (24.3%) 512 (53.3%)

We implemented the GraphLily middleware based on Xilinx Run-
time Library (XRT). The middleware uses the scalar-vector add kernel
in the GraphLily overlay to do on-device data transfer by setting the
scalar to zero; this method according to our benchmarking is more
than 2× faster than AXI Central DMA2, the default mechanism in
XRT for on-device data transfer.

VII. EVALUATION

A. Experiment Setup

Baselines. For evaluation of single kernels, we compare GraphLily
with vendor-provided sparse libraries, specifically MKL (2019.5)
on the CPU and cuSPARSE (10.1) on the GPU. For evaluation
of graph algorithms, we compare GraphLily with state-of-the-art
graph processing systems, specifically GraphIt [38] on the CPU and
GraphBLAST on the GPU. Both GraphIt and GraphBLAST use the
CSR format for pull and the CSC format for push. We conduct CPU
experiments on a two-socket 32-core 2.8 GHz Intel Xeon Gold 6242
machine with 384 GB DDR4 memory providing 282 GB/s bandwidth.
We conduct GPU experiments on a GTX 1080 Ti card with 3584
CUDA cores running at a peak frequency of 1582 MHz and 11 GB
GDDR5X memory providing 484 GB/s bandwidth.

Metrics. (1) Throughput, measured by millions of traversed edges
per second (MTEPS). We count all the edges of a graph as traversed
edges in both SpMV and SpMSpV. We measure the execution time
by taking the average of 10 runs. In the GPU and FPGA experiments,
the execution time does not include the data transfer overhead from
the host CPU to the GPU/FPGA accelerator over PCIe. (2) Bandwidth
efficiency, measured by throughput per GB/s. (3) Energy efficiency,
measured by throughput per Watt. We query CPU power using
powerstat, GPU using nvidia-smi, and FPGA using xbutil.

2https://www.xilinx.com/products/intellectual-property/axi central dma.
html



TABLE V: SpMV throughput (MTEPS) and bandwidth efficiency
(MTEPS/(GB/s)) — MKL runs with 32 threads.

Dataset
Throughput Bandwidth efficiency

MKL cuSPARSE GraphLily MKL cuSPARSE GraphLily
googleplus 2542 13643 7002 9.0 28.2 24.6
ogbl-ppa 2065 9007 8492 7.3 18.6 29.8
hollywood 2202 11277 8736 7.8 23.3 30.7
pokec 1504 5271 4064 5.3 10.9 14.3

ogbn-products 1556 2501 6434 5.5 5.2 22.6
orkut 1807 5332 6973 6.4 11.0 24.5

Geometric mean 1912 6783 6751 6.8 14.0 23.7

TABLE VI: SpMSpV execution time (ms) with different
vector sparsities — Results better than SpMV are marked
in blue.

Dataset SpMV
SpMSpV

99% 99.5% 99.9% 99.95%
googleplus 2.0 4.2 3.0 1.3 0.8
ogbl-ppa 5.5 34.8 20.6 5.5 2.9
hollywood 12.9 69.9 41.1 11.5 6.4

pokec 7.5 83.9 43.5 9.6 5.2
ogbn-products 19.2 215.0 115.6 25.7 13.5

orkut 30.5 316.9 172.2 39.7 20.2

TABLE VII: Power consumption (Watts).
MKL 32 threads cuSPARSE GraphLily

SpMV 277 152 44
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Fig. 8: Scalability of the SpMV accelerator.

Datasets. Table VIII lists the datasets. googleplus,
hollywood, pokec, and orkut are social network graphs;
they have been widely used in benchmarking graph processing
systems. ogbl-ppa and ogbn-products are from OGB [14],
a benchmark suite for the emerging graph neural networks. All the
six graphs are power-law.

TABLE VIII: Graph datasets.
Dataset # vertices # edges diameter

googleplus 108K 14M 7
ogbl-ppa 576K 42M 11
hollywood 1069K 113M 10
pokec 1632K 31M 11

ogbn-products 2449K 124M 23
orkut 2997K 213M 6

B. Evaluation of Single Kernels

Table V shows that on SpMV, GraphLily achieves a geometric-
mean throughput of 6751 MTEPS, which is 3.5× higher than MKL
running with 32 threads and matches cuSPARSE. The geometric-
mean bandwidth efficiency of GraphLily is 23.7 MTEPS/(GB/s),
3.5× higher than MKL and 1.7× higher than cuSPARSE. Table
VII reports the power consumption. GraphLily consumes 44 Watts,
which is only 16% of MKL and 29% of cuSPARSE. The geometric-
mean energy efficiency of GraphLily is therefore 153.4 MTEPS/Watt,
22.2× higher than MKL and 3.4× higher than cuSPARSE.

Figure 8 shows the scalability of the SpMV accelerator. When
increasing the number of HBM channels from 4 to 16, on
googleplus, ogbl-ppa, and pokec, the SpMV accelerator
achieves 2.7×, 2.9×, and 1.9× speedup, respectively. The SpMV
accelerator scales better on googleplus and ogbl-ppa because
these two graphs have a high average degree. On graphs with a

low average degree, such as pokec, loading the input vector and
writing back the output vector takes an increasing fraction of the total
execution time as loading the matrix is parallelized across more HBM
channels. The other three datasets (hollywood, ogbn-products,
and orkut) exceed the capacity of 4 HBM channels—one channel
is 256 MB. The next generation of HBM is expected to be 2 GB per
channel, allowing for handling larger graphs.

Table VI reports the execution time of the SpMSpV accelerator.
Since neither MKL nor cuSPARSE supports SpMSpV, we compare
the SpMSpV accelerator with the SpMV accelerator. The SpMSpV
accelerator outperforms the SpMV accelerator when the vector spar-
sity is higher than 99.9%. Therefore, we use 99.9% as the threshold
in the scheduling of graph algorithms.

C. Evaluation of Graph Algorithms

We evaluated three graph algorithms: BFS, PageRank, and SSSP.
In BFS, we selected the first vertex as the starting vertex, and we
turned off the early-exit optimization in GraphBLAST for a fair
comparison with GraphLily, which has not implemented this BFS-
specific optimization. In SSSP, we set all edge weights to 1.

Table IX reports the throughput. On PageRank, GraphLily achieves
a geometric mean of 5591 MTEPS, which is 2.5× higher than GraphIt
running with 32 threads and 1.1× higher than GraphBLAST. On
BFS, with pull mode, GraphLily achieves 3581 MTEPS, which is
1.8× higher than GraphIt and 0.9× of GraphBLAST; with pull-push
mode, GraphLily achieves 4286 MTEPS, which is 1.4× higher than
GraphIt and 0.7× of GraphBLAST. On SSSP, with pull-push mode,
GraphLily achieves 5301 MTEPS, which is 2.3× higher than GraphIt
and matches GraphBLAST. The detailed results of SSSP on each
dataset are not shown for the sake of space. Table X shows that
GraphLily consumes less than 18% the power of GraphIt and less
than 32% the power of GraphBLAST.

On BFS, when switching from pull mode to pull-push mode,
GraphLily achieves a speedup of 1.2×, less significant than GraphIt
(1.6×) and GraphBLAST (1.4×). The reason is that the SpMSpV
accelerator in the GraphLily overlay is wimpy so as to reserve
hardware resources (e.g., memory channels, LUTs) for the SpMV
accelerator. It is worth further study to find the optimal strategy of
allocating hardware resources between the SpMV and the SpMSpV
accelerators to maximize the overall performance.

Table XI compares GraphLily with HitGraph [41] and ThunderGP
[5], two prior FPGA graph accelerators that generate a separate
bitstream for each graph algorithm. Both HitGraph and ThunderGP
adopt an edge-centric programming interface [28]; they are not able
to exploit the sparsity in the frontier. The throughput numbers of
HitGraph and ThunderGP are taken from their papers; HitGraph only
reported simulated results. rmat21 is a synthetic power-law graph
with 2M vertices and 182M edges. Note that the BFS implementation
in ThunderGP is non-standard—it marks every visited vertex as



TABLE IX: Throughput (MTEPS) of graph algorithms. GI: GraphIt 32 threads, GB: GraphBLAST, GL: GraphLily.

Dataset
BFS PageRank

GI pull GI pull-push GB pull GB pull-push GL pull GL pull-push GI pull GB pull GL pull
googleplus 2296 3615 5804 9378 4626 4999 3452 7635 6252
ogbl-ppa 3047 5279 5482 7117 4460 5111 3622 6274 7092
hollywood 2086 3475 7067 10450 5202 6863 2663 6274 7471
pokec 2086 2960 3140 4222 1539 1965 1793 3522 2933

ogbn-proteins 1125 1422 2409 2799 3419 3644 1093 2536 5290
orkut 1816 3201 2851 4900 3737 4937 2151 4181 5940

Geometric mean 1957 3103 4114 5857 3581 4286 2280 4940 5591

TABLE X: Power consumption (Watts).
GraphIt 32 threads GraphBLAST GraphLily

BFS 264 146 45
PageRank 268 182 49

SSSP 264 164 48

TABLE XI: Comparison with prior FPGA graph accelerators — *
denotes simulated results instead of on-board measurement.

Algorithm Dataset System Throughput (MTEPS) Speedup

BFS hollywood
ThunderGP [5] 5960

1.2×
GraphLily 6863

PageRank
hollywood

ThunderGP [5] 4073
1.8×

GraphLily 7471

rmat21
HitGraph [41] 3410 *

1.4×
GraphLily 4653

SSSP
hollywood

ThunderGP [5] 4909
1.9×

GraphLily 9340

rmat21
HitGraph [41] 4304 *

1.3×
GraphLily 5646

1 no matter at which iteration the vertex is visited. The results
show that GraphLily achieves 1.3× to 1.4× higher throughput than
HitGraph, and 1.2× to 1.9× higher throughput than ThunderGP. The
frequency of GraphLily (165 MHz) is lower than ThunderGP (250
MHz for BFS, 243 MHz for PageRank, 251 MHz for SSSP). The
main reason is that the target platform of ThunderGP, Alveo U250,
has four DDR4 channels evenly distributed across four Super Logic
Regions (SLRs); in contrast, on Alveo U280, all the HBM channels
connect to SLR0, causing severe congestion on SLR0 even with the
coarse-grained floorplanning and pipelining technique of AutoBridge
[11]. To increase the frequency of GraphLily, we plan to enhance
AutoBridge to handle complex designs that utilize a large number of
HBM channels. For GraphLily, a frequency of 225 MHz is required
to saturate the HBM bandwidth; if we consider bank conflicts and
load imbalance, a higher frequency is required.

VIII. RELATED WORK

Workload Acceleration With HBM. Prior efforts have leveraged
the high bandwidth of HBM to accelerate a variety of workloads,
such as stream analytics [21], database algorithms [6], etc. GraphLily
is the first work to accelerate graph processing on HBM-equipped
FPGAs. Our key insight is that the ability of FPGAs to customize
the memory system and compute engines is crucial to fully unleashing
the potential of HBM.

Graph Processing on FPGAs. FPGA-based graph processing is
attractive due to its high efficiency and low power consumption.
A majority of prior FPGA-based graph processing works target a
specific graph algorithm, such as BFS [36], PageRank [40], etc. In
contrast, GraphLily supports a rich set of graph algorithms that can be
expressed with GraphBLAS. Existing FPGA-based graph processing
works that can handle multiple graph algorithms include GraphGen
[22], GraphOps [23], HitGraph [41] and ThunderGP [5]. A unique
advantage of GraphLily over these works is that GraphLily provides

a unified bitstream to handle multiple graph algorithms instead of
generating a separate bitstream for each algorithm.

FPGA Overlays. The idea of customizable soft-core processors on
FPGAs was introduced in [15], [19] and revisited as early examples
of overlay in [34]. The concept of an FPGA overlay was later used
in [4], with the goal of enabling software-inclined users with little
or no hardware expertise to achieve FPGA-targeted acceleration in
a productive manner. A number of overlay architectures have been
proposed for computational patterns such as vector processing [35],
GPU-like SIMT parallelism [2], and deep neural networks [27], [7].
To our knowledge, GraphLily is the first attempt to build an FPGA
overlay for graph processing.

Sparse Formats and Sparse Accelerators. There is an active body
of research on accelerating SpMV [9], sparse-matrix dense-matrix
multiplication (SpMM) [24], and sparse-matrix sparse-matrix multi-
plication (SpGEMM) [31]. The cyclic channel interleaving scheme in
CPSR is adopted from cyclic channel sparse rows (C2SR), a format
proposed for an SpGEMM accelerator [31]. One major difference
between C2SR and CPSR is that C2SR performs vectorized memory
accesses to each single row, while CPSR performs vectorized memory
accesses to packed rows. The latter better exploits the parallelism in
SpMV. CPSR also draws inspiration from compressed interleaved
sparse rows (CISR), a format proposed for an SpMV accelerator [9].
CPSR borrows from CISR the general idea of explicitly encoding
parallelism into the sparse matrix storage format, thus shifting the
complexity of operation scheduling from hardware to software. CPSR
avoids the centralized row decoding in CISR in order to scale to
multiple HBM channels. In addition, our SpMV accelerator differs
from [9] in the vector buffer design.

IX. CONCLUSION

This paper proposes GraphLily, the first graph linear algebra
overlay on HBM-equipped FPGAs. GraphLily unleashes the potential
of HBM for accelerating graph processing by co-designing the data
layout, the parallelization strategy, and the hardware architecture. Fur-
thermore, by adopting the GraphBLAS programming interface and
building a middleware to provide runtime support, GraphLily allows
users to port GraphBLAS-based CPU/GPU implementations of graph
algorithms to FPGAs with slight modifications. Our evaluation on
BFS, PageRank, and SSSP verifies the advantages of GraphLily over
competitive CPU and GPU graph processing systems in throughput,
bandwidth efficiency, and energy efficiency. Future work remains to
increase the frequency of GraphLily using HBM-aware floorplanning
and pipelining, and enhance the SpMSpV accelerator.
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