
GraphLily: Accelerating Graph Linear Algebra on
HBM-Equipped FPGAs

Yuwei Hu, Yixiao Du, Ecenur Ustun, Zhiru Zhang

Cornell University

2

Graph Processing Is Ubiquitous

Social network Railway Internet

Breadth-first search (BFS)

Recommend 2-hop neighbors
as new friends

Single-source shortest path (SSSP)

Navigation

PageRank

Search engines

Advantages of using FPGAs:
▪ Exploit the fine-grained parallelism in graph processing by customizing the memory

hierarchy and compute engines
▪ Consume less power than CPUs and GPUs

Limitations of prior works (e.g., GraphGen [1], ForeGraph [2], HitGraph [3], ThunderGP [4]):
▪ Require generating/loading a separate bitstream for each graph algorithm

• Generating a bitstream takes hours or days
• The cost of switching bitstreams at run time is high

▪ Target DDR-equipped FPGAs, which have a lower bandwidth than GPUs
• Graph processing is bandwidth bound

3

Graph Processing on FPGAs

[1] Eriko Nurvitadhi, et al. "An fpga framework for vertex-centric graph computation." FCCM 2014
[2] Guohao Dai, et al. "ForeGraph: Exploring large-scale graph processing on multi-fpga architecture." FPGA 2017
[3] Shijie Zhou, et al. "HitGraph: High-throughput graph processing framework on fpga." TPDS 2019
[4] Xinyu Chen, et al. "ThunderGP: HLS-based graph processing framework on fpgas." FPGA 2021

4

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

Contributions:

1. The first FPGA overlay for graph
processing

2. Effectively utilizing HBM bandwidth
by co-designing the data layout and
the accelerator architecture

3. Easily porting graph algorithms
from CPUs/GPUs to FPGAs with a
middleware

Middleware managing data transfer
and kernel scheduling

HBM Channel 1

HBM Channel 2

HBM Channel N

...

DDR

GraphBLAS Interface

Graph Algorithms: BFS, PageRank, SSSP, …

CPU

AXI

PCIe

HBM Channel
N+1 to N+3

SpMV
Accelerator

small kernels

SpMSpV
Accelerator

FPGA

5

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

Middleware managing data transfer
and kernel scheduling

HBM Channel 1

HBM Channel 2

HBM Channel N

...

DDR

GraphBLAS Interface

Graph Algorithms: BFS, PageRank, SSSP, …

CPU

AXI

PCIe

HBM Channel
N+1 to N+3

SpMV
Accelerator

small kernels

SpMSpV
Accelerator

FPGA

Contributions:

1. The first FPGA overlay for graph
processing

2. Effectively utilizing HBM bandwidth
by co-designing the data layout and
the accelerator architecture

3. Easily porting graph algorithms
from CPUs/GPUs to FPGAs with a
middleware

6

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

Middleware managing data transfer
and kernel scheduling

HBM Channel 1

HBM Channel 2

HBM Channel N

...

DDR

GraphBLAS Interface

Graph Algorithms: BFS, PageRank, SSSP, …

CPU

AXI

PCIe

HBM Channel
N+1 to N+3

SpMV
Accelerator

small kernels

SpMSpV
Accelerator

FPGA

Contributions:

1. The first FPGA overlay for graph
processing

2. Effectively utilizing HBM bandwidth
by co-designing the data layout and
the accelerator architecture

3. Easily porting graph algorithms
from CPUs/GPUs to FPGAs with a
middleware

7

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

Middleware managing data transfer
and kernel scheduling

HBM Channel 1

HBM Channel 2

HBM Channel N

...

DDR

GraphBLAS Interface

Graph Algorithms: BFS, PageRank, SSSP, …

CPU

AXI

PCIe

HBM Channel
N+1 to N+3

SpMV
Accelerator

small kernels

SpMSpV
Accelerator

FPGA

Contributions:

1. The first FPGA overlay for graph
processing

2. Effectively utilizing HBM bandwidth
by co-designing the data layout and
the accelerator architecture

3. Easily porting graph algorithms
from CPUs/GPUs to FPGAs with a
middleware

8

Sparse Linear Algebra Formulation of Graph Algorithms

A

B

C

D

E

F

G

H

Graph View

Frontier: B, D

9

Sparse Linear Algebra Formulation of Graph Algorithms

A

B

C

D

E

F

G

H

Pull-based graph traversal

Graph View Matrix View

0

1

0

1

0

0

0

0

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

frontier new frontier

× =

A

B

C

D

E

F

G

H

A B C D E F G H
src vertex

d
st

ve
rt

ex

SpMV (sparse-matrix dense-vector multiplication)

0 1 0 0 0 1 0 0 1

Frontier: B, D

10

Sparse Linear Algebra Formulation of Graph Algorithms

Push-based graph traversal

Graph View Matrix View

1

1

0

0

1

0

1

1

0

1

A

B

C

D

E

F

G

H

frontier new frontier

× =

SpMSpV (sparse-matrix sparse-vector multiplication)

A

B

C

D

E

F

G

H

0 0

0 0

0 1

0 0

1 0

1 1

0 0

0 1

A

B

C

D

E

F

G

H

A B C D E F G H
src vertex

d
st

ve
rt

ex

A

B

C

D

E

F

G

H

Frontier: B, D

11

SpMV vs. SpMSpV

SpMSpV:
▪ Less work
▪ Random memory accesses
▪ Hard to parallelize due to contention

on updating the output

SpMV:
▪ More work
▪ Sequential memory accesses
▪ Easy to parallelize

Heuristic:
▪ Use SpMSpV when the frontier is small (usually in the first few iterations),

switch to SpMV when the frontier is large

▪ Standard building blocks for graph algorithms in the language of sparse linear algebra

▪ Express a rich set of graph algorithms by generalizing SpMV/SpMSpV:
• Customizable binary operators and reduction operators, modeled as semirings
• An optional mask vector (in BFS, the mask vector avoids visiting a vertex twice)

12

GraphBLAS Programming Interface

Binary op Reduction op Application
Arithmetic semiring mul add PageRank

Boolean semiring logical and logical or BFS
Tropical semiring add min SSSP

[1] SuiteSparse: https://github.com/DrTimothyAldenDavis/SuiteSparse
[2] Graphblas template library: https://github.com/cmu-sei/gbtl
[3] GraphBLAST: https://github.com/gunrock/graphblast

▪ One API specification, many implementations on CPUs [1][2] and GPUs [3]
• GraphLily is the first work that supports GraphBLAS on FPGAs

https://github.com/DrTimothyAldenDavis/SuiteSparse
https://github.com/cmu-sei/gbtl,
https://github.com/gunrock/graphblast

Saturating the bandwidth of HBM requires:
▪ Vectorized, streaming accesses to each HBM channel
▪ Concurrent accesses to multiple HBM channels

13

SpMV Sparse Matrix Format

Assume one HBM channel delivers 128 bits per access, one element requires 32 bits for the value and 32 bits
for the column index, then the vectorization factor should be 128 / (32 + 32) = 2

Stream 1: A

Stream 2:

Stream 3:

Stream 4:

B

*EF

*GH

A

B

C

D

E F

G H

I J

K

A

E F

B

G H

C

I J

D

K

C*J I

DK *

HBM Channel 1

HBM Channel 2

PE Cluster 1

PE 1

PE 2

PE Cluster 2

PE 3

PE 4

1

2

3

4

5

6

7

8
Padding overhead is small

We propose Cyclic Packed Streams of Rows (CPSR)

14

SpMV Accelerator Architecture

15

SpMV Accelerator Architecture

16

SpMV Accelerator Architecture

17

SpMV Accelerator Architecture

18

SpMV Accelerator Architecture

PEs support multiple semirings to handle
multiple graph algorithms

19

SpMV Accelerator Architecture

CSVecBuf (Cluster Shared Vector
Buffer) is scalable by combining
vector replication and banking

Packed CSC format

20

SpMSpV

A

B

C

D

E F

G H

I J

K

Accessed Elements

✕

Cycle 1:
PE1

Switch column

E G

PE2

Cycle n+2:

Cycle n+3:

C H

K

A

I

CK

H

DDR

E

G

▪ Memory accesses in the same column are sequential
▪ Switching columns incurs random accesses
▪ PEs process one column at a time

• Avoiding contention on updating the output
• Limiting the degree of parallelization

▪ Each accelerator is exposed to users as a module
▪ Users construct graph algorithms by specifying and scheduling the modules

21

Middleware

class BFS : graphlily::ModuleCollection {
// Specify the modules and load the bitstream
void init() {

this->SpMV = graphlily::SpMVModule<BoolSemiring>;
this->Assign = graphlily::AssignModule;
load_bitstream("graphlily_overlay.bitstream");

}
// Format the matrix and send it to the device
void prepare_matrix(SparseMatrix Adj) {

AdjCPSR = this->SpMV.format(Adj);
this->SpMV.to_hbm(AdjCPSR);

}
// Compute BFS by scheduling the modules
// The logic is the same as in GraphBLAST
DenseVec run(int src, int num_iter) {

. . .
}

};

Pull-mode BFS in GraphBLAST

DenseVec bfs(SparseMatrix Adj, int src, int num_iter) {
// Initialize the frontier vector
SparseVec frontier = {src};
// Initialize the distance vector
DenseVec distance(Adj.num_rows);
for (int i=0; i<Adj.num_rows; i++) {distance[i] = 0;}
distance[src] = 0;
for (int iter=1; iter<=num_iter; iter++) {

// Perform graph traversal using SpMV
frontier = graphblast::SpMV<BoolSemiring>(Adj,

frontier,
distance);

// Update distance
graphblast::Assign(distance, frontier, iter);

}
return distance;

}

Pull-mode BFS in GraphLily

Implementation on a Xilinx Alveo U280 FPGA using Vitis HLS:
▪ 16 HBM channels for the CPSR sparse matrix
▪ 3 HBM channels for the input vector, the mask vector, and the output vector
▪ 1 DDR4 channel for the packed CSC matrix
▪ Total bandwidth is 285 GB/s
▪ Frequency is 165 MHz

22

Frequency and Resource Utilization

LUT FF DSP BRAM URAM
BFS-only 335K (30.0%) 426K (18.4%) 179 (2.0%) 393 (22.9%) 512 (53.3%)
overlay 399K (35.8%) 467K (20.2%) 723 (8.0%) 393 (22.9%) 512 (53.3%)

▪ Compared with BFS-only (i.e., the PEs only support the Boolean semiring), overlay
consumes slightly more LUT, FF, and DSP resources

23

SpMV — Throughput and Bandwidth Efficiency

Dataset MKL (32 threads) cuSPARSE GraphLily
googleplus 2542 13643 7002
ogbl-ppa 2065 9007 8492

hollywood 2202 11277 8736
pokec 1504 5271 4064

ogbn-products 1556 2501 6434
orkut 1807 5332 6973

Geometric mean 1912 6783 6751

Throughput (MTEPS)

MKL (32 threads) cuSPARSE GraphLily
9.0 28.2 24.6
7.3 18.6 29.8
7.8 23.3 30.7
5.3 10.9 14.3
5.5 5.2 22.6
6.4 11.0 24.5
6.8 14.0 23.7

Bandwidth efficiency (MTEPS/(GB/s))

▪ Throughput (geo-mean): 3.5× higher than MKL; comparable to cuSPARSE
▪ Bandwidth efficiency (geo-mean): 3.5× higher than MKL; 1.7× higher than cuSPARSE

CPU evaluation: 32-core Intel Xeon Gold 6242 with 282 GB/s bandwidth
GPU evaluation: GTX 1080 Ti with 484 GB/s bandwidth

25

SpMSpV — Execution Time

Dataset SpMV
SpMSpV

99% 99.5% 99.9% 99.95%
googleplus 2.0 4.2 3.0 1.3 0.8
ogbl-ppa 5.5 34.8 20.6 5.5 2.9

hollywood 12.9 69.9 41.1 11.5 6.4
pokec 7.5 83.9 43.5 9.6 5.2

ogbn-products 19.2 215.0 115.6 25.7 13.5
orkut 30.5 316.9 172.2 39.7 20.2

Execution time (ms) with different vector sparsities
Results better than SpMV are marked in green

▪ SpMSpV outperforms SpMV when the vector sparsity is higher than 99.9%
• We use 99.9% as the threshold in the scheduling of graph algorithms

▪ Future work: enhance SpMSpV

PageRank

26

Graph Algorithms — Comparing with CPU/GPU Systems

Dataset GraphIt GraphBLAST GraphLily
googleplus 3452 7635 6252
ogbl-ppa 3622 6274 7092

hollywood 2663 8127 7471
pokec 1793 3522 2933

ogbn-products 1093 2536 5290
orkut 2151 4181 5940

Geometric mean 2280 4940 5591

▪ Throughput (pull): 2.5× higher than GraphIt; 1.1× higher than GraphBLAST

Throughput (MTEPS)

27

Graph Algorithms — Comparing with CPU/GPU Systems
BFS

Throughput (MTEPS)

GraphIt GraphBLAST GraphBLAST
Pull Pull-Push Pull Pull-Push Pull Pull-Push

googleplus
ogbl-ppa

hollywood
pokec

ogbn-products
orkut

Geometric mean

28

Graph Algorithms — Comparing with CPU/GPU Systems
BFS

Throughput (MTEPS)

GraphIt GraphBLAST GraphBLAST
Pull Pull-Push Pull Pull-Push Pull Pull-Push

googleplus 2296 5804 4626
ogbl-ppa 3047 5482 4460

hollywood 2086 7067 5202
pokec 1886 3140 1539

ogbn-products 1125 2409 3419
orkut 1816 2851 3737

Geometric mean 1957 4114 3581

▪ Throughput (pull): 1.8× higher than GraphIt; 10% lower than GraphBLAST

29

Graph Algorithms — Comparing with CPU/GPU Systems

GraphIt GraphBLAST GraphBLAST
Pull Pull-Push Pull Pull-Push Pull Pull-Push

googleplus 2296 3615 5804 9378 4626 4999
ogbl-ppa 3047 5279 5482 7117 4460 5111

hollywood 2086 3475 7067 10450 5202 6863
pokec 1886 2960 3140 4222 1539 1965

ogbn-products 1125 1422 2409 2799 3419 3644
orkut 1816 3201 2851 4900 3737 4937

Geometric mean 1957 3103 4114 5857 3581 4286

BFS
Throughput (MTEPS)

▪ Throughput (pull): 1.8× higher than GraphIt; 10% lower than GraphBLAST
▪ Switching from pull to pull-push, GraphLily achieves 1.2× speedup, less significant than

GraphIt (1.6×) and GraphBLAST (1.4×)
▪ Energy efficiency (pull-push): 8.1× higher than GraphIt; 2.4× higher than GraphBLAST

1.6× 1.4× 1.2×

GraphIt GraphBLAST GraphLily

264 146 45

Power (Watt)

GraphIt GraphBLAST GraphLily

11.8 40.1 95.2

Energy efficiency (MTEPS/Watt)

30

Graph Algorithms — Comparing with Single-Purpose FPGA Accelerators

Algorithm Dataset System Throughput
(MTEPS)

Speedup

BFS hollywood
ThunderGP 5960

1.2×
GraphLily 6863

PageRank
hollywood

ThunderGP 4073
1.8×

GraphLily 7471

rmat21
HitGraph 3410

1.4×
GraphLily 4653

SSSP
hollywood

ThunderGP 4909
1.9×

GraphLily 9340

rmat21
HitGraph 4304

1.3×
GraphLily 5646

▪ Throughput: 1.3× to 1.4× higher than HitGraph; 1.2× to 1.9× higher than ThunderGP
▪ Frequency: lower than ThunderGP (165 MHz vs. 250 MHz for BFS, 243 MHz for PageRank,

251 MHz for SSSP)

ThunderGP: measured on Alveo U250
HitGraph: simulated results
Both target DDR-equipped FPGAs

The heterogeneous architecture of U280 causes severe congestion on SLR0

31

Why Is the Frequency of GraphLily Lower than ThunderGP?

SLR3

D
D

R

SLR2

D
D

R
SLR1
D

D
R

SLR0

D
D

R

SLR2

SLR1

D
D

R

SLR0

D
D

R

HBM

Homogeneous architecture
of U250

Heterogeneous architecture
of U280

Research question: how to increase the frequency of large-scale HLS designs on
multi-SLR HBM-equipped FPGAs?

GraphLily: Accelerating Graph Linear Algebra on
HBM-Equipped FPGAs

Yuwei Hu, Yixiao Du, Ecenur Ustun, Zhiru Zhang

Cornell University

https://github.com/cornell-zhang/GraphLily

https://github.com/cornell-zhang/GraphLily

