
FeatGraph: A Flexible and Efficient Backend for
Graph Neural Network Systems

Yuwei Hu1, Zihao Ye2, Minjie Wang2, Jiali Yu2, Da Zheng2,

Mu Li2, Zheng Zhang2, Zhiru Zhang1, Yida Wang2

1 Cornell University
2 Amazon Web Services

2

Graph Neural Networks (GNNs) Are Getting Popular

Emerging SystemsDiverse Applications

[1]

[2]

1. AliGraph: A Comprehensive Graph Neural Network Platform
2. Interpolate between two molecules with pre-trained JTNN

[3]

[4]

[5]

3. https://www.dgl.ai
4. https://pytorch-geometric.readthedocs.io
5. https://github.com/PaddlePaddle/PGL

http://www.vldb.org/pvldb/vol12/p2094-zhu.pdf
https://github.com/shionhonda/dgl-playground/blob/master/jtnn.ipynb
https://www.dgl.ai/
https://pytorch-geometric.readthedocs.io/en/latest/
https://github.com/PaddlePaddle/PGL

3

Key Building Block of GNNs — Message Aggregation

■ Message function calculates a message from the feature of each source vertex
■ Aggregation function aggregates the messages as the new feature of the

destination vertex

The message function is multi-
layer perceptron (MLP)

The aggregation function is
taking the max

Message function and aggregation function are customizable

4

Key Building Block of GNNs — Attention Calculation

■ Edge function calculates an attention score for each edge

The edge function is
dot product

Edge function is customizable

5

GNN Systems Lack a Flexible and Efficient Backend

Deep learning frameworks as backend (e.g., PyTorch in PyG):
● Lack of support for computation on graph (highly sparse) ❌

Graph processing frameworks as backend (e.g., Minigun in DGL):
● Can flexibly express computation on graph ✔️
● Missing optimizations in the feature dimension ❌

Minigun exploits edge parallelism by
scheduling the computation on one
edge to one thread

thread 2

thread 1

thread 3

We want to exploit parallelism in the feature dimension as well

6

Our Solution: FeatGraph

■ FeatGraph co-optimizes graph traversal and feature dimension computation
■ FeatGraph accelerates GNN training and inference by 32× on CPU, 7× on GPU

Sparse templates express graph traversal

UDFs (user-defined functions) express
feature dimension computation

7

Mapping Graph Computations to Sparse Kernels

XB
new = sum(copy(XA), copy(XC))

Graph View Matrix View

Message aggregation is mapped to generalized SpMM
(sparse-dense matrix multiplication)

xA=
𝑎1…
𝑎4

𝑏1…
𝑏4

𝑒1…
𝑒4

xC =
𝑐1…
𝑐4

𝑑1…
𝑑4

𝑓1…
𝑓4

𝑔1…
𝑔4

ℎ1…
ℎ4

A

B C

D
E

F
G

H

8

Graph View Matrix View

Mapping Graph Computations to Sparse Kernels

SAB = SBA = dot(XA, XB)

xA=
𝑎1…
𝑎4

xB =
𝑏1…
𝑏4

𝑒1…
𝑒4

𝑐1…
𝑐4

𝑑1…
𝑑4

𝑓1…
𝑓4

𝑔1…
𝑔4

ℎ1…
ℎ4

A

B C

D
E

F
G

H

Attention calculation is mapped to generalized SDDMM
(sampled dense-dense matrix multiplication)

9

Programming Interface

featgraph.spmm(Adj, MessageF, AggregationF, target, FDS)

adjacency matrix
of the graph

featgraph.sddmm(Adj, EdgeF, target, FDS)

user-defined
message function

user-defined
aggregation function

CPU or
GPU

feature dimension
schedule

adjacency matrix
of the graph

user-defined
edge function

CPU or
GPU

feature dimension
schedule

10

import featgraph, tvm
Adj = featgraph.spmat(shape=(n, n), nnz=m)
VertexFeat = tvm.placeholder(shape=(n, d))

def MessageF(src, dst, eid):
out = tvm.compute(shape=(d,),

lambda i: VertexFeat[src, i])
return out

AggregationF = tvm.sum

Result = featgraph.spmm(Adj, MessageF, AggregationF)

Expressing GCN[1] Message Aggregation

The message function copies the
feature vector of the source vertex

The aggregation function is sum

Trigger the SpMM template

[1] T. N. Kipf and M. Welling. “Semi-supervised classification with graph convolutional networks.” ICLR 2017

11

Optimizing GCN Message Aggregation on CPUs

Assume cache capacity is L is feature length

■ Graph partitioning to improve cache utilization

Improved read locality within each partition
Need to merge intermediate results from 4 partitions

4 source vertex partitions

12

■ Combining graph partitioning with feature tiling

Lower merge/write cost
Need to traverse the adjacency matrix twice

Feature tiling enables the tradeoff between accesses to graph topological data
and accesses to feature data

2 source vertex partitions, 2 feature partitions

Optimizing GCN Message Aggregation on CPUs

13

def FDS(out):
s = tvm.create_schedule(out)
s[out].split(out.axis[0], factor=8)
return s

Result = featgraph.spmm(Adj, MessageF, AggregationF, ‘cpu’, FDS)

Decoupled, two-level optimizations:
● Incorporating graph partitioning into the sparse templates
● Specifying feature tiling with an FDS (feature dimension schedule)

Applying CPU Optimizations in FeatGraph

More complex UDFs that compute on multi-dimensional feature tensors require a
multi-level tiling scheme, which can also be expressed by an FDS

14

Effect of Graph Partitioning and Feature Tiling

GCN message aggregation, reddit dataset:

■ Combining graph partitioning and feature tiling effectively boosts the performance

15

Sensitivity to Partitioning Factors

GCN message aggregation, reddit dataset, feature length 128:

■ The best performance is achieved with 16 graph partitions and 4 feature partitions
■ FeatGraph uses naive grid search; using intelligent tuners is left for future work

16

■ Effective parallelization is the key to achieving high performance on GPU
■ FeatGraph exploits parallelism in the feature dimension

● Threads collectively process one edge using tree reduction
● In comparison, Gunrock’s parallelization strategy: one thread processes one edge

Optimizing Dot-Product Attention on GPUs

17

def FDS(out):
s = tvm.create_schedule(out)
s[out].tree_reduce(out.reduce_axis[0], 'thread.x')
return s

Result = featgraph.sddmm(Adj, EdgeF, ‘gpu’, FDS)

Decoupled, two-level optimizations:
● Incorporating vertex/edge parallelization into the sparse templates
● Specifying feature parallelization with an FDS

Applying GPU Optimizations in FeatGraph

More complex UDFs that compute on multi-dimensional feature tensors require a
multi-level parallelization scheme, which can also be expressed by an FDS

18

Effect of Feature Dimension Tree Reduction

Dot-product attention, rand-100K dataset:

■ Tree reduction is especially efficient when the feature length is large

19

MLP Message Aggregation
import featgraph, tvm
Adj = featgraph.spmat(shape=(n, n), nnz=m)
message function: ReLU((src feature + dst feature) * W)
XV = tvm.placeholder(shape=(n,d1))
W = tvm.placeholder(shape=(d1,d2))
def MessageF(src, dst, eid):

k = tvm.reduce_axis((0, d1))
out = tvm.compute((d2,), lambda i:

tvm.max(tvm.sum((XV[src, k] + XV[dst, k]) * W[k,i])), 0)
return out

aggregation function: max
AggregationF = tvm.max
CPU FDS: tile multiple dimensions
def FDS(out):
s = tvm.create_schedule(out)
s[out].split(out.axis[0], factor=8)
s[out].split(out.reduce_axis[0], factor=8)
return s

GPU FDS: parallelize multiple dimensions
def FDS(out):
s = tvm.create_schedule(out)
s[out].bind(out.axis[0], 'block.x')
s[out].tree_reduce(out.reduce_axis[0], 'thread.x')
return s

20

Evaluation Setup

Environment
● CPU evaluation is on Amazon c5.9xlarge instance, which is a one socket 18-

core 3.0 GHz Intel Xeon Platinum 8124M machine with 25 MB LLC
● GPU evaluation is on Amazon p3.2xlarge instance, which has a Tesla V100

Kernels
● GCN message aggregation (vanilla SpMM)
● MLP message aggregation (generalized SpMM)
● Dot-product attention (vanilla SDDMM)

Baselines
● Vendor-provided sparse libraries: MKL on CPU, cuSPARSE on GPU
● Graph processing frameworks: Ligra on CPU, Gunrock on GPU

21

Dot-product attention

Single-Threaded CPU Kernel Performance

MLP message aggregationGCN message aggregation

On reddit dataset:

■ FeatGraph outperforms both Ligra and MKL; MKL does not support MLP message
aggregation and dot-product attention

■ FeatGraph achieves similar speedup on other tested datasets

22

Multi-Threaded CPU Kernel Performance

GCN message aggregation kernel, reddit dataset, feature length 512:

■ FeatGraph scales well because of two reasons:
● Avoiding LLC contention by assigning multiple threads to work on one graph partition at a time

● The thread pool in TVM runtime is lightweight and efficient

23

GPU Kernel Performance

On reddit dataset:

Dot-product attentionMLP message aggregationGCN message aggregation

■ FeatGraph outperforms Gunrock; FeatGraph is on par with cuSPARSE on GCN message
aggregation; cuSPARSE does not support the other two kernels

■ Gunrock is extremely slow on message aggregation kernels because of two reasons:
● Its edge parallelization incurs a huge overhead of atomic operations for vertex-wise reductions

● It does not exploit parallelism in feature dimension computation

24

End-to-End GNN Training and Inference

FeatGraph accelerates end-to-end
GNN training and inference by up to
32× on CPU and 7× on GPU

We integrated FeatGraph into DGL (version 0.4.1)
The original backend of DGL is Minigun, a “mini-version” of Gunrock

reddit dataset

FeatGraph: A Flexible and Efficient Backend for
Graph Neural Network Systems

https://github.com/dglai/FeatGraph

https://github.com/dglai/FeatGraph

